Aprendizaje de independencias específicas del contexto en Markov random fields
Title | Aprendizaje de independencias específicas del contexto en Markov random fields |
Publication Type | Conference Paper |
Year of Publication | 2011 |
Authors | Edera A, Bromberg F |
Conference Name | XVII Congreso Argentino de Ciencias de la Computación |
Abstract | Los modelos no dirigidos o Markov random fields son ampliamente utilizados para problemas que aprenden una distribución desconocida desde un conjunto de datos. Esto es porque permiten representar una distribución eficientemente al hacer explícitas las independencias condicionales que pueden existir entre sus variables. Además de estas independencias es posible representar otras, las Independencias Específicas del Contexto (CSIs) que a diferencia de las anteriores sólo son válidas bajo ciertos valores que pueden tomar subconjuntos de sus variables. Debido a esto son complicadas de representar y aprenderlas desde datos. En este trabajo presentamos un enfoque para representar CSIs en modelos no dirigidos y un algoritmo que las aprende desde datos utilizando tests estadísticos. Mostramos resultados donde los modelos aprendidos por nuestro algoritmo resultan ser mejores o comparables a modelos aprendidos por otros sin utilizar CSIs. |