Biblio
.
2016. Peach: Predicting frost events in peach orchards using iot technology. EAI Endorsed Transactions on the Internet of Things. (5)
.
2014. Learning Markov networks networks with context-specific independences.. International Journal on Artificial Intelligence Tools. 23(06)
.
2009. Improving the reliability of causal discovery from small data sets using argumentation. The Journal of Machine Learning Research. 10:301–340.
.
2017. Image classification for detection of winter grapevine buds in natural conditions using scale-invariant features transform, bag of features and support vector machines. Computers and Electronics in Agriculture. 135:81-95.
.
2014. The IBMAP approach for Markov network structure learning. Annals of Mathematics and Artificial Intelligence. 72(3):197--223.
.
2009. Guest Editorial: 10th Argentinean Symposium on Artificial Intelligence (ASAI 2009). Inteligencia Artificial.. 13(44):4.
.
2018. Grapevine buds detection and localization in 3D space based on Structure from Motion and 2D image classification. Computers in Industry. 99C (Special Issue on Machine Vision for Outdoor Environments):303-312.
.
2018. Ensemble of shape functions and support vector machines for the estimation of discrete arm muscle activation from external biceps 3D point clouds. Computers in Biology and Medicine. 95:129-139.
.
2009. Efficient Markov network structure discovery using independence tests. Journal of Artificial Intelligence Research. 35:449–484.
.
2009. Efficient Markov network discovery using particle filters. Computational Intelligence. 25(4):367–394.
.
2017. Blankets Joint Posterior score for learning Markov network structures . International Journal of Approximate Reasoning. https://doi.org/10.1016/j.ijar.2017.10.018
.
2012. An autonomous labeling approach to support vector machines algorithms for network traffic anomaly detection. Expert Systems with Applications. 39:1822–1829.
.
2015. Sonda de temperatura para uso agrícola. CASE Congreso Argentino de Sistemas Embebidos.
.
2021. Multi species weed detection with Retinanet one-step network in a maize field. Precision agriculture’21. :2223–2228.
.
2008. Learning Markov Network Structure using Few Independence Tests.. SIAM Data Mining. :680--691.
.
2014. Estimación de carga muscular mediante imágenes. Argentinean Symposium of Artificial Intelligence (ASAI) - Jornadas Argentinas de Informática. :91--98.
.
2006. Efficient Markov network structure discovery using independence tests. Proceedings of the SIAM Conference in Data Mining. :141--152.
.
2007. Efficient and Robust Independence-Based Markov Network Structure Discovery.. 20th International Joint Conference of Artificial Inteliigence (IJCAI). :2431-2436.
.
2013. Characterization of LQI behavior in WSN for glacier area in Patagonia Argentina. Embedded Systems (SASE/CASE), 2013 Fourth Argentine Symposium and Conference on. :1--6.
.
2009. Variante de grow shrink para mejorar la calidad de markov blankets. XXXV Latin American Informatics Conference (CLEI), Pelotas, Brasil.
.
2018. Toward Self-Determinant Citizen Governance: Trust-Boosting Sociocracy 3.0 with Blockchain. Symposium on Implementing Collaborative Governance. Models, experiences and challenges to foster policy coordination, and to enhance sustainable community outcomes and public value generation.
.
2011. Strategies for piecing-together Local-to-Global Markov network learning algorithms. ASAI 2011.
.
2010. Speeding up the execution of a large number of statistical tests of independence. Proceedings of ASAI 2010, Argentinean Symposioum of Artificial Intelligence.
.
2011. Sistema SCADA para monitoreo y control de una central hidroeléctrica. CNEISI.
.
2012. Segmentación de imágenes en viñedos para la medición autónoma de variables vitícolas. XVIII Congreso Argentino de Ciencias de la Computación.

]