Biblio

Export 30 results:
Autor Título [ Tipo(Desc)] Año
Filters: Autor is Bromberg, Facundo  [Clear All Filters]
Conference Paper
Edera A, Bromberg F.  2011.  Aprendizaje de independencias específicas del contexto en Markov random fields. XVII Congreso Argentino de Ciencias de la Computación.
Abraham L, Bromberg F, Forradellas R.  2015.  Arm muscular effort estimation from images using Computer Vision and Machine Learning. 1st International Conference on Ambient Intelligence for Health.
Ribas A.  2019.  Exploring the Influence of Self-determination in the Collective Intelligence of Collaborative Organizations. IFKAD, International Forum on Knowledge Asset Dynamics.
Edera A, Strappa Y, Bromberg F.  2014.  The Grow-Shrink strategy for learning Markov network structures constrained by context-specific independences. 14th edition of the Ibero-American Conference on Artificial Intelligence.
Ribas A, Bromberg F, Dinamarca A.  2019.  S3LF: a Socio-Technical System for Self-Determinant Governance in Collaborative Organizations. 23RD INTERNATIONAL PUBLIC MANAGEMENT NETWORK (IPMN) CONFERENCE.
Pérez DS, Bromberg F.  2012.  Segmentación de imágenes en viñedos para la medición autónoma de variables vitícolas. XVIII Congreso Argentino de Ciencias de la Computación.
Schlüter F, Bromberg F, Pérez DS.  2010.  Speeding up the execution of a large number of statistical tests of independence. Proceedings of ASAI 2010, Argentinean Symposioum of Artificial Intelligence.
Bromberg F, Schlüter F.  2009.  Variante de grow shrink para mejorar la calidad de markov blankets. XXXV Latin American Informatics Conference (CLEI), Pelotas, Brasil.
Conference Proceedings
Diedrichs ALaura, Robles MInés, Bromberg F, Mercado G, Dujovne D.  2013.  Characterization of LQI behavior in WSN for glacier area in Patagonia Argentina. Embedded Systems (SASE/CASE), 2013 Fourth Argentine Symposium and Conference on. :1--6.
Bromberg F, Margaritis D.  2007.  Efficient and Robust Independence-Based Markov Network Structure Discovery.. 20th International Joint Conference of Artificial Inteliigence (IJCAI). :2431-2436.
Bromberg F, Margaritis D, Honavar V.  2006.  Efficient Markov network structure discovery using independence tests. Proceedings of the SIAM Conference in Data Mining. :141--152.
Abraham L, Bromberg F, Forradellas R.  2014.  Estimación de carga muscular mediante imágenes. Argentinean Symposium of Artificial Intelligence (ASAI) - Jornadas Argentinas de Informática. :91--98.
Gandhi P, Bromberg F, Margaritis D.  2008.  Learning Markov Network Structure using Few Independence Tests.. SIAM Data Mining. :680--691.
Journal Article
Catania CA, Bromberg F, Garino CGarcía.  2012.  An autonomous labeling approach to support vector machines algorithms for network traffic anomaly detection. Expert Systems with Applications. 39:1822–1829.
Schlüter F, Strappa Y, Bromberg F, Milone DH.  2017.  Blankets Joint Posterior score for learning Markov network structures . International Journal of Approximate Reasoning. https://doi.org/10.1016/j.ijar.2017.10.018
Margaritis D, Bromberg F.  2009.  Efficient Markov network discovery using particle filters. Computational Intelligence. 25(4):367–394.
Bromberg F, Margaritis D, Honavar V.  2009.  Efficient Markov network structure discovery using independence tests. Journal of Artificial Intelligence Research. 35:449–484.
Diaz CAriel, Pérez DSebastián, Miatello H, Bromberg F.  2018.  Grapevine buds detection and localization in 3D space based on Structure from Motion and 2D image classification. Computers in Industry. 99C (Special Issue on Machine Vision for Outdoor Environments):303-312.
Berdún L, Bromberg F.  2009.  Guest Editorial: 10th Argentinean Symposium on Artificial Intelligence (ASAI 2009). Inteligencia Artificial.. 13(44):4.
Schlüter F, Bromberg F, Edera A.  2014.  The IBMAP approach for Markov network structure learning. Annals of Mathematics and Artificial Intelligence. 72(3):197--223.
Pérez DSebastián, Bromberg F, Diaz CAriel.  2017.  Image classification for detection of winter grapevine buds in natural conditions using scale-invariant features transform, bag of features and support vector machines. Computers and Electronics in Agriculture. 135:81-95.
Bromberg F, Margaritis D.  2009.  Improving the reliability of causal discovery from small data sets using argumentation. The Journal of Machine Learning Research. 10:301–340.
Edera A, Schlüter F, Bromberg F.  2014.  Learning Markov networks networks with context-specific independences.. International Journal on Artificial Intelligence Tools. 23(06)
Diedrichs ALaura, Bromberg F, Dujovne D, Brun-Laguna K, Watteyne T.  2018.  Prediction of frost events using machine learning and IoT sensing devices. IEEE Internet of Things Journal. 5(6):4589-4597.

Páginas