Biblio
Aprendizaje de independencias específicas del contexto en Markov random fields. XVII Congreso Argentino de Ciencias de la Computación.
.
2011. Arm muscular effort estimation from images using Computer Vision and Machine Learning. 1st International Conference on Ambient Intelligence for Health.
.
2015. An autonomous labeling approach to support vector machines algorithms for network traffic anomaly detection. Expert Systems with Applications. 39:1822–1829.
.
2012. Blankets Joint Posterior score for learning Markov network structures . International Journal of Approximate Reasoning. https://doi.org/10.1016/j.ijar.2017.10.018
.
2017. Characterization of LQI behavior in WSN for glacier area in Patagonia Argentina. Embedded Systems (SASE/CASE), 2013 Fourth Argentine Symposium and Conference on. :1--6.
.
2013. .
2016. Efficient and Robust Independence-Based Markov Network Structure Discovery.. 20th International Joint Conference of Artificial Inteliigence (IJCAI). :2431-2436.
.
2007. Efficient Markov network discovery using particle filters. Computational Intelligence. 25(4):367–394.
.
2009. Efficient Markov network structure discovery using independence tests. Proceedings of the SIAM Conference in Data Mining. :141--152.
.
2006. Efficient Markov network structure discovery using independence tests. Journal of Artificial Intelligence Research. 35:449–484.
.
2009. El enfoque IBMAP para aprendizaje de estructuras de redes de Markov. Tesis doctoral en Facultad de Ciencias Exactas - Universidad Nacional del Centro de la Provincia de Buenos Aires. Director: Facundo Bromberg. . Doctorado en Ciencias de la Computación (PhD in Computer Science):138.
.
2014. Estimación de carga muscular mediante imágenes. Argentinean Symposium of Artificial Intelligence (ASAI) - Jornadas Argentinas de Informática. :91--98.
.
2014. Exploring the Influence of Self-determination in the Collective Intelligence of Collaborative Organizations. IFKAD, International Forum on Knowledge Asset Dynamics.
.
2019. Grapevine buds detection and localization in 3D space based on Structure from Motion and 2D image classification. Computers in Industry. 99C (Special Issue on Machine Vision for Outdoor Environments):303-312.
.
2018. The Grow-Shrink strategy for learning Markov network structures constrained by context-specific independences. 14th edition of the Ibero-American Conference on Artificial Intelligence.
.
2014. Guest Editorial: 10th Argentinean Symposium on Artificial Intelligence (ASAI 2009). Inteligencia Artificial.. 13(44):4.
.
2009. The IBMAP approach for Markov network structure learning. Annals of Mathematics and Artificial Intelligence. 72(3):197--223.
.
2014. Image classification for detection of winter grapevine buds in natural conditions using scale-invariant features transform, bag of features and support vector machines. Computers and Electronics in Agriculture. 135:81-95.
.
2017. Improving the reliability of causal discovery from small data sets using argumentation. The Journal of Machine Learning Research. 10:301–340.
.
2009. Learning Markov Network Structure using Few Independence Tests.. SIAM Data Mining. :680--691.
.
2008. Learning Markov networks networks with context-specific independences.. International Journal on Artificial Intelligence Tools. 23(06)
.
2014. Markov networks structure discovery using independence tests. Computer Science. Doctor of Philosophy:182.
.
2007. .
2013. Prediction of frost events using machine learning and IoT sensing devices. IEEE Internet of Things Journal. 5(6):4589-4597.
.
2018.