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ABSTRACT

We investigate efficient algorithms for learning the structure of a Markov network from

data using the independence-based approach. Such algorithms conduct a series of conditional

independence tests on data, successively restricting the set of possible structures until there is

only a single structure consistent with the outcomes of the conditional independence tests exe-

cuted (if possible). As Pearl has shown, the instances of the conditional independence relation

in any domain are theoretically interdependent, made explicit in his well-known conditional

independence axioms. The first couple of algorithms we discuss, GSMN and GSIMN, exploit

Pearl’s independence axioms to reduce the number of tests required to learn a Markov network.

This is useful in domains where independence tests are expensive, such as cases of very large

data sets or distributed data. Subsequently, we explore how these axioms can be exploited to

“correct” the outcome of unreliable statistical independence tests, such as in applications where

little data is available. We show how the problem of incorrect tests can be mapped to inference

in inconsistent knowledge bases, a problem studied extensively in the field of non-monotonic

logic. We present an algorithm for inferring independence values based on a sub-class of non-

monotonic logics: the argumentation framework. Our results show the advantage of using our

approach in the learning of structures, with improvements in the accuracy of learned networks

of up to 20%. As an alternative to logic-based interdependence among independence tests,

we also explore probabilistic interdependence. Our algorithm, called PFMN, takes a Bayesian

particle filtering approach, using a population of Markov network structures to maintain the

posterior probability distribution over them given the outcomes of the tests performed. The

result is an approximate algorithm (due to the use of particle filtering) that is useful in domains

where independence tests are expensive.
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CHAPTER 1. Introductory Remarks

In this thesis we discuss a series of contributions to the problem of learning graphical

models from data, which are a special type of probabilistic model. A probabilistic model is a

tool for reasoning under uncertainty that makes possible the calculation of the probability of

any well-formed propositional sentence through a process called probabilistic inference. The

propositions considered usually take the form of an assignment of values to variables, where

a variable is some attribute or property of the world that can take one out of many possible

values in a domain. Examples of variables are the side of a coin facing upwards, the letter

grade of a student, the crop yield of a corn field, with corresponding domains {head, tails},

{A,B,C,D,F} and [0.1, 50] in kg, respectively. An important example of a probabilistic model

is a tabular probabilistic model. A tabular model is a function, represented as a table, that

assigns a probability to every possible joint event (a joint event is an assignment to every

variable) such that the sum of the probabilities adds up to 1.

As exemplified in the following series of examples, the tabular model presents unsurmount-

able storage and computational difficulties. Graphical models propose an efficient alternative

by exploiting the conditional independences that exists among the random variables in the do-

main. It has been shown that these conditional independencies can be represented graphically,

giving the name to this family of models. (See Section 1.2.2 for a more detail discussion of

these ideas.) In this thesis we present a series of contributions to the problem of learning the

conditional independence structure (i.e., the graph) of a graphical model from data.

Example 1.1. We start with a simple example of a probabilistic model for the problem of

modeling the crop yield (X) in an agricultural study. We assume the modeller has at his or

her disposal (usually noisy) observations of quantities such as: soil acidity (Y1), soil humidity
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Table 1.1 Tabular probabilistic model consisting on five binary random

variables: X, Y1, Y2, Y3, Y4. The left column shows the as-

signment of values for each of the variables as a string of bits

and the left column shows the probability associated to the cor-

responding assignment.

# x, y1, y2, y3, y4 Pr(X = x, Y1 = y1, Y2 = y2, Y3 = y3, Y4 = y4)
1 00000 0.0483
2 00001 0.0551
3 00010 0.0531
4 00011 0.0331
5 00100 0.0602
6 00101 0.0424
7 00110 0.0626
8 00111 0.0159
9 01000 0.0063
10 01001 0.0293
11 01010 0.0465
12 01011 0.0095
13 01100 0.0321
14 01101 0.0354
15 01110 0.0069
16 01111 0.0374
17 10000 0.0113
18 10001 0.0320
19 10010 0.0068
20 10011 0.0202
21 10100 0.0083
22 10101 0.0409
23 10110 0.0219
24 10111 0.0288
25 11000 0.0040
26 11001 0.0238
27 11010 0.0611
28 11011 0.0643
29 11100 0.0026
30 11101 0.0270
31 11110 0.0134
32 11111 0.0594

(Y2), concentration of Sodium (Y3) and Potassium (Y4). For simplicity, we assume the domain

of these variables to be binary, with each variable taking either value high or low, symbolized

as 1 or 0, respectively. (Note this is a contrived example and may not necessarily correspond

to current experiments in the agricultural sciences). The quantities Y1, . . . , Y4 are commonly

called observable variables, or simply observables, and quantity X, crop yield in the example,

is commonly called a (hidden) target variable.
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We are frequently interested in the quantity

Pr(X | Y1 . . . Y4) =
Pr(X, Y1, . . . , Y4)

Pr(Y1, . . . , Y4)
, (1.1)

in order to predict the value of the target variable given the knowledge of the observable vari-

ables. This is an example of probabilistic inference, where the corresponding boolean formulas

are X, Y1, . . . , Y4 and Y1, . . . , Y4 (with commas symbolizing logical conjunction). One can cal-

culate this quantity using the tabular probabilistic model shown in Table 1.1. The numerator is

obtained by simply looking up in the table of the tabular model the value of Pr(X, Y1, . . . , Y4).

To compute the denominator we apply the law of total probability, i.e.,

Pr(Y1, . . . , Y4) =
∑

x∈{0,1}

Pr(X = x, Y1, . . . , Y4)

where X = x denotes the assignment of value x to variable X. The sum is over all values

x in the domain of X. Each of the terms in this summation can now be computed like the

numerator by a simple look up in the table of the tabular model.

Let us consider a concrete case to illustrate this calculation in which a farmer measured

Y1 = 1, Y2 = 0, Y3 = 0, Y4 = 1, that is, high soil acidity, low soil humidity, low Sodium

concentration, and high Potassium concentration. Based on these measurements, the farmer

is interested in predicting the probability of whether the crop yield will be high (X = 1) or

low (X = 0). For that, it computes the conditional probability of the crop yield given the

observables, i.e., Pr(X = 1 | Y1 = 1, Y2 = 0, Y3 = 0, Y4 = 1), using Eq. (1.1). From Table 1.1,

the numerator for the bit string 11001 (entry #26) equals 0.0238. The denominator equals the

sum of the probabilities for X = 0 and X = 1, i.e., bit strings 01001 and 11001 corresponding

to entries #10 and #26 in the table, and probabilities 0.0293 and 0.0238, respectively. We thus

have that

Pr(X = 1 | Y1 = 1, Y2 = 0, Y3 = 0, Y4 = 1) =
0.0238

0.0293 + 0.0238
= 0.4482.

Since the conditional distribution is normalized, Pr(X = 0 | Y1 = 1, Y2 = 0, Y3 = 0, Y4 = 1) =

1−Pr(X = 1 | Y1 = 1, Y2 = 0, Y3 = 0, Y4 = 1) = 0.5518. From this result, the farmer concludes

it is more likely that the crop yield will be low.
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Table 1.2 Tabular probabilistic model consisting on 64 groups of five binary

random variables: {Xi, Y1,i, Y2,i, Y3,i, Y4,i}
64
i=1. The left column

shows the assignment of values for each of the 320 variables as a

string of bits and the left column shows the probability associated

to the corresponding assignment.

# {xi, y1,i, y2,i, y3,i, y4,i}
64
i=1 Pr({Xi = xi, Y1,i = y1,i, Y2,i = y2,i, Y3,i = y3,i, Y4,i = y4,i}

64
i=1)

1 000000. . .0000000 0.001483
2 000000. . .0000001 0.002551
3 000000. . .0000010 0.002151
4 000000. . .0000011 0.000331

. . . . . . . . .
25×64 − 1 111111. . .1111110 0.003561

25×64 111111. . .1111111 0.009741

Unfortunately computing the probabilities of arbitrary boolean formulas can become ex-

tremely difficult when the number of variables is large. Let us illustrate this by extending the

above example.

Example 1.2. We extend Example 1.1 by considering a very common measurement setting

in agricultural studies in which each of the above five variables, the target X, and the five

observables Y1, . . . , Y4, are measured in each location i = 1, . . . , m, out of tens of locations in

a field. These locations are usually obtained by sub-dividing a field into plots using a regular

grid, with each square of the grid corresponding to a plot. A common case is an 8 × 8 grid,

i.e., m = 64. As in the previous example, one is frequently interested in the most probable

assignment of the target variables given some value for the observables (i.e., what is the most

probable crop yield under certain conditions). This can be computed using the distribution of

the target variables {X1, . . . , X64} conditioned on the observable variables, i.e.,

Pr(X1, . . . , X64 | {Y1,i, . . . , Y4,i}
64
i=1) =

Pr(X1 = x1, . . . , X64 = x64, {Y1,i, . . . , Y4,i}
64
i=1)

Pr({Y1, . . . , Y4}64i=1)
, (1.2)

The numerator is computed by simply looking up in the table of the tabular probabilistic

model shown partially in Table 1.2. Since each variable is binary, the number of entries in

the complete model is 2(5×64). Unfortunately the storage of such a model is prohibitive in

practice. To illustrate, consider recording it in paper. At 100 entries per page, we would require

1.07 × 1094 sheets of paper. To record it in a computer memory instead would require, at 4

bytes per entry, more than 2× 1085 terabytes. To exacerbate this problem the time complexity
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required to compute the denominator is also exponential. Let us compute it by applying the law

of total probability:

Pr({Y1, . . . , Y4}
64
i=1)) =

∑

{x1,...,x64}

Pr({Xi, Y1,i, . . . , Y4,i}
64
i=1))

where {x1, . . . , x64} denotes the set of all possible assignments for the set of random variables

{X1, . . . , X64}. The terms in the summation can now be computed by simply looking up in

the table of the tabular model. Assuming the look-up in the table takes a constant time of 1

nanosecond, the running time required to retrieve all 264 entries would take 584 years.

The example shows that for relatively simple domains the tabular probabilistic model,

although simple, has prohibitive memory and time requirements. These difficulties can be

overcome by the use of a graphical model. One such model is a Markov Random Field (MRF).

Markov random fields are graphical probabilistic models that allow a more efficient solution of

the problem of probabilistic inference. The storage and computational difficulties illustrated

by Example 1.2 are a result of storing the probability for every joint event, i.e., the probability

of every possible assignment of the complete set of variables. An important insight in the

theory of MRF is the recognition that conditional independencies among the variables in the

domain can greatly reduce the storage and computational requirements. We demonstrate the

use of MRFs in the following two examples. We first demonstrate this by an extreme but

simple case in which variables at different locations are non-interacting (independent). We

then present an example that considers a sightly more realistic set of independencies. These

examples introduce the concept of a MRF at an intuitive level. A formal definition of an MRF

is given in detail below (c.f. Section 1.2.5).

Example 1.3. Let us examine the crop yield problem under the extreme assumption that

variables at different locations are non-interacting, more precisely, the crop yield Xi at location

i is only affected by the soil acidity Y1,i, soil humidity Y2,i, concentration of Sodium Y3,i, and

concentration of Potassium Y4,i at location i. This is modelled probabilistically as conditional

independence (c.f. Section 1.2.2), i.e.

Pr(Xi, Y1,i, . . . , Y4,i | {Xj , Y1,j , . . . , Y4,j}j 6=i) = Pr(Xi, Y1,i, . . . , Y4,i)
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and thus the joint can be decomposed into a product,

Pr({Xi, Y1,i, . . . , Y4,i}
64
i=1) =

64∏

i=1

Pr(Xi, Y1,i, . . . , Y4,i).

According to this decomposition we can compute the joint distribution as the product of the

probability of each factor. In other words, we can model the joint distribution by a set of tabular

models, one for each factor. Table 1.1 of Example 1.1 serves as an example of the tabular model

of one of these factors. Therefore, since there are 64 factors, and the tabular model for each

factor contains 32 entries, the complete model is represented by only 64 × 32 = 2048 entries,

an overwhelming reduction from the 2.13× 1096 required for the fully dependent model.

The above example presents overwhelming improvements in the storage requirements, show-

ing the utility of exploiting the independences among the variables. Unfortunately, the as-

sumption of non-interacting locations may be an oversimplification that does not reflect many

dependencies that may exist in the underlying, true model.

The solution proposed by the theory of Markov random fields is to consider interactions

only among nearest neighbors. For that, it defines a neighborhood structure N among the

locations (i.e., (i, j) ∈ N if and only if location i is a neighbor of location j). In what follows

we overload this notation denoting by N (i) the neighbors of location i in N , and we may refer

to the neighborhood structure N as simply the structure of the model. One example of a

structure is a regular lattice, in which neighbors in the lattice correspond to neighbors in N .

A more general example of a neighborhood structure, but still constrained to spatial problems,

can be defined through a radio r ∈ R and the euclidean distance d(i, j) between locations i

and j. We say i and j are neighbors, i.e., (i, j) ∈ N , if and only if d(i, j) ≤ r.

The structure is commonly provided by an expert, for instance, in the next example we

illustrate the usage of the neighborhood structure in the crop yield problem by assuming N

to be a regular lattice. Expert information may be inaccurate leading to incorrect structures.

In this thesis we present several algorithms for automatically discovering the structure from

data.

Fig. 1.1 shows the regular lattice considered for the crop yield problem. As exemplified by

this figure, the neighborhood structure can be represented graphically by a Markov network, an
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Figure 1.1 Example of a regular lattice Markov network with 64 loca-

tions. Each node Si corresponds to the set of random variables

{Xi, Y1,i, Y2,i, Y3,i, Y4,i} at location i in an the crop field. The

figure highlights the neighbors 20, 27, 29, and 36 of location 28.

undirected graph whose nodes correspond to random variables, and there is an edge between

any two nodes i and j such that (i, j) ∈ N .

The nearest neighbors assumption proposed by the MRF formalism implies that a lo-

cation i interacts with the whole system only through its neighbors. Probabilistically this

is equivalent to say that location i is conditionally independent of all other locations when

conditioned on its neighbors. If we denote by Si the set of variables at location i, (e.g.,

Si = {Xi, Y1,i, Y2,i, Y3,i, Y4,i} in the crop yield example), the nearest neighbor assumption is

formalized by

Pr(Si | {S1,S2, . . . ,S64} − {Si}) = Pr(Si | N (i)). (1.3)
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This is called the Markov property and gives its name to the theory of MRFs.

One important contribution of the theory of MRFs is the demonstration that under the

Markov property, the joint distribution can be decomposed into a product of simpler factors,

i.e.,

Pr(S1,S2, . . . ,Sn) =
1

Z

n∏

i=1

fi(N (i)) (1.4)

where n denotes the number of locations, and Z is a normalization constant historically called

the partition function.

The above decomposition is similar to the decomposition obtained under the non-interacting

assumption of the previous example, but in this case each factor is a slightly more complex

function that depends on the neighbors of location i. Despite this extra complexity, the storage

and computational requirements are also greatly simplified, allowing an overwhelming reduc-

tion in the number of entries in its tabular model when compared to the joint case of Example

1.2.

This is demonstrated in the following extension of Example 1.3.

Example 1.4. Let us examine the crop yield problem by using Markov random fields as the

probabilistic model instead of the tabular model used in the previous example. For this problem,

we assume the neighborhood N to be a regular lattice, as shown in the Markov network of

Fig. 1.1.

Assuming the neighborhoods sizes are all the same i.e., |N (i)| = m, i = 1, . . . , 64, for

some constant m, the above decomposition requires only 64 × 25.m numbers to be stored (i.e.,

25m entries per factor), resulting in an exponential reduction from the 25×64 required for the

joint case (of Example 1.2). For instance, for m = 4 the number of entries required is 220 =

1.05× 106, or 1.05 megabytes of storage (versus the 1085 terabytes of the joint case).

The above example assumes that both the structure of interactions and the parameters

are known. The structure could be given by an expert (e.g., the regular lattice proposed for

the crop yield examples), and the parameters (implicit in the functions fi of Eq. (1.4)) are

usually obtained experimentally. However, in many cases such information is not available. In
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this work we present several efficient algorithms that automate the first of these tasks, namely

constructing the structure of a Markov network from data. Learning the structure from data

has the potential to produce structures that are closer to the structure of the underlying model,

thus improving the model and in turn the applications that rely on inferences from it.

1.1 Related Work

As mentioned above, this thesis addresses the problem of learning the structure of graph-

ical models from data. Graphical models can be divided into directed models or Bayesian

networks and undirected models or Markov networks. A graphical model consists of two

parts: a graph (the model structure), and a set of parameters.

The graph serves as a concise representation of the conditional independences that theoret-

ically hold among the random variables in the domain. Bayesian and Markov networks differ

in their representation power, i.e., in the type of independences their graphs can represent.

From a more practical perspective, they also differ in the properties of their factor functions

(see below). The factor functions of Markov networks are not normalized, requiring a costly

(usually exponentially) computation of a normalization constant (commonly known as parti-

tion function) in order to obtain a fully quantified probabilistic model. Bayesian networks,

instead, allow a factorization of the joint into conditional probability distributions that can be

learned efficiently from data.

In this thesis we focus on Markov networks. As exemplified in the examples of the previous

section, for Markov networks, the independences encoded by the graph allow a decomposition

of the joint distribution into factors or potential functions (or simply potentials) consisting

of only a subset of the variables. The potentials are combined as a product to recover the

joint distribution, commonly known as the Gibbs distribution. These potential functions are

quantified by the parameters of the graphical model. Markov networks have been used in

numerous application domains, ranging from discovering gene expression pathways in bioin-

formatics (Friedman et al., 2000) to computer vision (Geman and Geman (1984); Besag et al.

(1991), and more recently Isard (2003) and Anguelov et al. (2005)), where they have been
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historically called Markov random fields. Bayesian networks have found more applicability

lately in the representation of causal models (Pearl, 2000) mainly due to the directionality

of their graphs. Markov networks have instead been used primarily to represent symmetrical

spatial relationships where no variable can be singled out as the cause of others. For exam-

ple, in the context of climatology, a high temperature at one geographic location, although

correlated to the high temperature at a neighboring location, can hardly be considered its

cause. The data mining community has also recently exhibited some interest in the use of

Markov networks for spatial data mining, which has applications in geography, transportation,

agriculture, climatology, ecology and others (Shekhar et al., 2004).

The problem of learning a graphical probabilistic model from data consists of first learning

the structure, and given the structure, learning the parameters (Heckerman et al., 1995; Bun-

tine, 1994). Although interesting and in certain cases difficult, we do not consider the problem

of parameter learning from data in this thesis. Also, we consider only random variables with

discrete domains, as this simplifies the notation and requires only rudimentary concepts from

probability theory, while maintaining all the challenges of the structure learning problem.

The problem of structure learning consists on finding the graph G among the (super-

exponentially many) possible candidate graphs, such that, combined with the parameters Θ,

results in a probabilistic model h = (G, Θ) that fits the data. Historically, this problem has

been addressed by two very distinct approaches: score-based and constrained-based (also called

independence-based). The score-based approach is exemplified for Bayesian networks by Lam

and Bacchus (1994); Heckerman (1995), and for Markov networks by Della Pietra et al. (1997);

McCallum (2003). Algorithms that follow this approach conduct a search in the space of legal

structures in an attempt to discover a model structure of maximum score. Due to the in-

tractable size of the search space i.e., the space of all legal graphs, which is super-exponential

in size, score-based algorithms usually resort to heuristic search. At each step of the structure

search, a probabilistic inference step is necessary to evaluate the score (e.g., maximum like-

lihood, minimum description length (Lam and Bacchus, 1994), or pseudo-likelihood (Besag,

1974)). Probabilistic inference requires a complete model, and thus at each step of the search
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the parameters of the model must be estimated from the data. For Bayesian networks the com-

putation of the parameters is tractable and therefore several practical score-based algorithms

for structure learning have been developed (Lam and Bacchus, 1994; Heckerman, 1995). In the

general case, for undirected models the computation of the parameters requires the calculation

of the partition function (i.e., the normalizing constant), a problem known to be NP-hard

for all but a small class of Markov networks, namely the class of structures with tree-width

greater than 1 (Jerrum and Sinclair, 1993; Barahona, 1982; Srebro and Karger, 2001). Srebro

and Karger (2001) considered a restricted class of graphical models, the class of decompos-

able models, which allows an efficient computation of the parameters. An example of learning

non-decomposable MNs is presented by Hofmann and Tresp (1998), which is an approach for

learning structure in continuous domains with non-linear relationships among the domain at-

tributes. Their algorithm removes edges greedily based on a leave-one-out cross validation

log-likelihood score. A non-score-based approach is Abbeel et al. (2006), which introduces a

new class of efficient algorithms for structure and parameter learning of factor graphs, a class

of graphical models that subsumes Markov and Bayesian networks. Their approach is based

on a new parametrization of the Gibbs distribution in which the potential functions are forced

to be probability distributions. It is a promising and theoretically sound approach, supported

by a generalization of the Hammersley-Clifford theorem for factor graphs, that may lead in

the future to practical and efficient algorithms for undirected structure learning.

Contrary to the score-based approach, algorithms that take the independence-based ap-

proach are able to learn the structure of any Markov networks efficiently (including non-

decomposable networks). These algorithms exploit directly the semantics of the graph struc-

ture, namely, the fact that it encodes the conditional independences that hold in the domain

(Spirtes et al., 2000). This approach casts the problem of structure learning as an instance of

the constraint satisfaction problem, where the constraints are conditional independences among

the variables. Algorithms in this class perform statistical tests on data to learn about condi-

tional independences that hold in the data (e.g. Pearson’s χ2 test of independence), assume

those independences hold in the model (i.e., assume the data is a sample of the model to be
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learned and that the statistical test performed on the data is correct), and discard those struc-

tures that violate these independences. Most algorithms in this class proceed by successively

performing statistical tests of independence until all structures but one have been discarded

(uniqueness follows under certain assumptions, more below). Algorithms exist that require a

number of tests that is polynomial in the number n of variables in the domain, which, together

with the fact that statistical tests can be executed in a time proportional to the number of data

points N in the data set, result in a total running time that is polynomial in both n and N .

Intuitively, the non-exponential running time (even though the space has super-exponential

size) results from the fact that each test may discard an exponential number of structures. For

instance, consider a test performed at the very beginning of the algorithm that has sufficient

information to discard an edge between two variables X and Y (i.e., it discards (X, Y ) from the

neighborhood structure N ); such a test eliminates half of the candidate structures. Another

advantage of the independence-based algorithms is that they can learn the structure without

the need of parameter estimation, making them the best choice for undirected graphical models

(in order to learn the complete model, parameters must be estimated, but only once, when the

final structure has been discovered).

For Bayesian networks, the independence-based approach has been mainly exemplified by

the SGS (Spirtes et al., 2000), PC (Spirtes et al., 2000), and the Grow-Shrink (GS) (Margaritis

and Thrun, 2000) algorithms, as well as algorithms for restricted classes such as trees (Chow

and Liu, 1968) and polytrees (Rebane and Pearl, 1989). An important contribution presented

in this thesis is the GSMN algorithm (Grow-Shrink Markov Network structure learning

algorithm) which, to the best of our knowledge, is the first independence-based algorithm (and

as such, the first efficient algorithm) for structure learning of Markov networks. This algorithm

is presented in Chapter 2 together with GSIMN algorithm (Grow-Shrink Inference-based

Markov Network structure learning algorithm). GSIMN improves on GSMN by exploiting

Pearl’s axioms of independence (see Section 1.2) to infer unknown independences from those

known so far, thus saving the need to perform the corresponding statistical test on data, an

operation that can be costly for large data sets or in distributed domains.
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Although very promising, the independence-based approach has the disadvantage that the

quality of statistical independence tests may degrade rapidly with the number of variables in-

volved in the test (see Section 1.2.4 for details). One can therefore think of the independence-

based algorithms as exchanging run time complexity for sample complexity. In Chapter 4

we address this problem by proposing a mechanism to improve the quality of tests based on

argumentation (Dung, 1995; Loui, 1987; Prakken, 1997; Prakken and Vreeswijk, 2002). We

model the problem of independence-based structure discovery as a knowledge base containing

a set of independences related through certain axioms (a set of relationship constraints that

hold between independences that we describe in more detail in Section 1.2.2 below). Statistical

tests on finite data sets may result in errors in these tests and therefore inconsistencies in the

knowledge base. Our approach uses the theory of argumentation for resolving these incon-

sistencies (an instance of the class of defeasible logics) augmented with a preference function

that is used to reason and possibly correct errors in these tests. This results in a more robust

conditional independence test, which we shall call the argumentative independence test

or AIT.

Graphical models and formal argumentation systems share a common goal: tackling the

problem of reasoning under uncertain information. This common goal has motivated several

initiatives to combine them (Vreeswijk, 2005; Saha and Sen, 2004; Kohlas, 2003). For instance,

Vreeswijk et al. establish an explicit connection between formal argumentation and Bayesian

networks by introducing a notion of an argument in Bayesian networks. Although we use

both approaches in Chapter 4, our objective is not to combine the two frameworks but rather

to use argumentation as a “service” in the structure learning algorithm. That is, we use

argumentation in structure learning algorithms to better cope with the uncertainty in test

outcomes.

In Chapter 3, we present the PFMN algorithm (Particle Filter Markov Network), another

independence-based algorithm for structure learning. This algorithm uses a Bayesian perspec-

tive, employing a generative model (instead of argumentation) as an alternative method to deal

with uncertainty in the tests outcomes. It models the problem of independence-based struc-
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ture learning a statistical model whose random variables are the Markov network structure,

the conditional independence tests tests, and the data.

1.2 Notation and Preliminaries

In this section we introduce important concepts necessary for an understanding of the

algorithms discussed in the following chapters. We start by defining and discussing probabilistic

models, continue with important concepts such as conditional independence and graphical

models, and conclude with an overview of statistical tests of independence. The presentation

of these basic concepts, besides allowing us to introduce our notation, also motivates the

general framework of graphical models by highlighting its purpose and strengths. We refer the

interested reader to Pearl (1988) for a good self-contained discussion of the topics covered in

this section.

1.2.1 Probabilistic models

A probabilistic model is a powerful tool for reasoning under uncertainty that makes possible

the calculation of the probability of any well-formed propositional sentence through a process

called probabilistic inference. Given a set of propositions Σ = {α, β, γ, . . .}, the set of well-

formed proposition sentences consists on the Boolean formulas involving these propositions,

e.g. (α∧β)∨¬γ, where a proposition is any sentence that can take only true or false values.

The propositions considered usually take the form of an assignment of values to variables

where a variable is some attribute or property of the world (e.g. side of the coin facing

upward, the letter grade of a student, the crop yield of a corn field, tree color) that can take

one out of several possible values in a domain (e.g. {head, tails}, {A,B,C,D,F}, [0.1, 50] in kg,

{red, yellow, green}, respectively). Examples of propositions are therefore “side of the coin =

head,” “crop yield = 0.95kg,” “tree color = yellow,” etc. If we have probabilities assigned to

the possible values that a variable may take we refer to it as a random variable. In this work we

consider only random variables in discrete domains, as this simplifies the notation and requires

only elementary concepts from probability theory, while maintaining all the challenges of the
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structure learning problem

Under this ontological stance, a state of the world (or a possible world as it is commonly

called in the literature) is described by a joint event, i.e., an assignment of values to all random

variables.

In the rest of the thesis we denote random variables with capitals (e.g., X, Y, Z) and sets

of variables with bold capitals (e.g., X,Y,Z). In particular, we denote by V = {V1, . . . , Vn}

the set of all n variables in the system, and we use notation Vi, i = 1, 2, . . . , n to denote

the i-th variable in V. In many algorithms we name the variables directly by their indices

in V; for instance, we refer to V3, the third variable in V, simply by 3. We denote a value

of a variable by its corresponding lowercase letter and assignments using the equal sign. For

example, X = x denotes the event where variable X takes value x. Slightly abusing notation

we denote a set of values corresponding to a set of variables by bold lowercase letters, e.g.,

X = x, and we may abbreviate the probability of an assignment by omitting the variables

names, e.g., Pr(x) ≡ Pr(X = x). Under this notation, a joint event can be succinctly denoted

by v.

In all algorithms in this thesis we consider the same format for data set D, i.e., a table with

n columns corresponding to the variables of the system, and N rows which correspond to data

points, a value assignment to each of the variables. An example of a data point in a domain

with n binary variables V = {V1, V2, V3, V4, V5} is (Y1 = 0, Y2 = 1, Y3 = 1, Y4 = 0, Y5 = 1).

The underlying assumption that we make is that data set D is a sample of the underlying

probability distribution that the algorithm is trying to model.

An important example of a probabilistic model is the tabular model, which for binary

variables is Pr : {true, false}×{true, false}×· · · −→ R, a function that assigns a probability

Pr(v) to every possible joint event v such that the sum of the probabilities adds up to 1.

1.2.2 Conditional Independence and Graphoids

Let P be a joint probability distribution over a set of variables V and let X, Y, and Z denote

any three disjoint subsets of V. The sets X and Y are said to be conditionally independent
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given Z if for every configuration x, y and z of variables X, Y and Z, respectively, it is the

case that

P (x | y, z) = P (x | z) whenever P (y, z) > 0. (1.5)

Intuitively, this means that learning the value of Y does not provide additional information

about X, once we know the value of Z. One can think of Z as “shielding” X from Y.

We will use the notation of Dawid (1979) (X⊥⊥Y | Z)P or simply (X⊥⊥Y | Z) to denote

that in the probabilistic model P , X is independent of Y conditioned on Z. (X 6⊥⊥Y | Z)

denotes conditional dependence. We will use (X⊥⊥Y | Z) as shorthand for ({X}⊥⊥{Y } | Z).

Unconditional independence will be denoted by (X⊥⊥Y | ∅) or simply (X⊥⊥Y ).

Eqs. (1.6) below contain a (partial) list of properties satisfied by the conditional indepen-

dence relation (X⊥⊥Y | Z). (Intersection is valid in strictly positive probability distributions).

The proof of these properties can be derived from Eq. (1.5) and the axioms of probability the-

ory. We will therefore refer to them as the general axioms of independence. These properties

were independently proposed by Dawid (1979); Spohn (1980); Pearl and Paz (1987).

(Symmetry) (X⊥⊥Y | Z) ⇐⇒ (Y⊥⊥X | Z)

(Decomposition) (X⊥⊥Y ∪W | Z) =⇒ (X⊥⊥Y | Z) ∧ (X⊥⊥W | Z)

(Weak Union) (X⊥⊥Y ∪W | Z) =⇒ (X⊥⊥Y | Z ∪W) (1.6)

(Contraction) (X⊥⊥Y | Z) ∧ (X⊥⊥W | Z ∪Y) =⇒ (X⊥⊥Y ∪W | Z)

(Intersection) (X⊥⊥Y | Z ∪W) ∧ (X⊥⊥W | Z ∪Y) =⇒ (X⊥⊥Y ∪W | Z)

where X, Y, Z and W are all disjoint subsets of V.

Pearl (Pearl, 1988, p. 87) describes some striking similarities between the general axioms

and vertex separation in graphs. For this reason he called graphoids any three-place relation

that satisfies the general axioms. Conditional independence is one example, but interestingly

these axioms are also satisfied by vertex separation in undirected graphs, by d-separation in

directed graphs (see formal definition of d-separation below), and by embedded multi-valued

dependencies in relational databases (see for instance Butz (2000)).

The similarity of the general axioms with the axioms of vertex separation suggests that it

may be possible to encode a set of conditional independences in the form of a graph. This

encodings are called graphical models. Assuming a one-to-one correspondence between the set
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Figure 1.2 Example Markov network. The nodes represent variables in

the domain V = {0, 1, 2, 3, 4, 5, 6, 7}.

of random variables of the probabilistic model and the nodes in the graph, a graphical model

assigns a semantics to graphs that allows them to encode correctly the independences of the

probabilistic model (if possible) and allow one to know precisely which class of probabilistic

models can be encoded by a given class of graphs. To fully quantify a graphical model one must

also find a way to quantify the edges of the graph. That is, we consider graphical models that

consists of two parts: a graph (the model structure), and a set of parameters. We distinguish

between two major classes of graphical models: Markov networks and Bayesian networks,

which differ by the type of their edges: undirected and directed, respectively.

In undirected models or Markov networks (MNs), the independences of a probabilistic

model P are encoded in a graph G as a mapping of conditional independences into vertex

separation. An example of MN is shown in Fig. 1.2. The main idea is that a subset Z of nodes

in a graph G intercepts all paths between nodes of X and those of Y (written 〈X,Y | Z〉G) if

and only if X is independent of Y given Z in P . Formally,

(X⊥⊥Y | Z)P ⇐⇒ 〈X,Y | Z〉G.

A graph that satisfies this condition is called a perfect map of P and we say it is faithful to

the probability distribution P . For instance, in the example MN of Fig. 1.2, the set {0, 5}

intercepts all paths from node 7 to node 3, and therefore, under the faithfulness assumption,

it must be the case that 7 is conditionally independent of 3 given {0, 5}. As argued in Pearl

(1988), not every probability distribution has a perfect map. Those models that do have a

perfect map are called graph-isomorph and satisfy, in addition to the general axioms Eqs. (1.6),
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Figure 1.3 Example Bayesian network. The nodes represent variables in

the domain V = {0, 1, 2, 3, 4, 5, 6, 7}.

the following, more specific set of axioms:

(Symmetry) (X⊥⊥Y | Z) ⇐⇒ (Y⊥⊥X | Z)

(Decomposition) (X⊥⊥Y ∪W | Z) =⇒ (X⊥⊥Y | Z) ∧ (X⊥⊥W | Z)

(Intersection) (X⊥⊥Y | Z ∪W) ∧ (X⊥⊥W | Z ∪Y) =⇒ (X⊥⊥Y ∪W | Z) (1.7)

(Strong Union) (X⊥⊥Y | Z) =⇒ (X⊥⊥Y | Z ∪W)

(Transitivity) (X⊥⊥Y | Z) =⇒ (X⊥⊥ γ | Z) ∨ (γ⊥⊥Y | Z)

where X, Y, Z and W are all disjoint subsets of V, and γ stands for a single variable, not in

X ∪Y ∪ Z.

We refer to these axioms as the specific undirected axioms.

Directed graphs or Bayesian networks (BNs) use a slightly more complex separability crite-

rion called d-separation, which takes into consideration the directionality of the arrows in the

graph. An example BN is shown in Fig. 1.3. Intuitively, the notion of d-separation matches

that of vertex-separation, where the notion of separation is replaced by the more complex

notion of “blocked” paths. This is defined formally in the next two definitions.

Definition 1.1. A set of nodes Z is said to d-separate X from Y, denoted 〈X,Y | Z〉D, if Z

“blocks” every path from a node in X to a node in Y.

Definition 1.2. A set of nodes Z “blocks” a path from a node in set X to a node in set

Y, if there is a node W in the path satisfying one of the following two conditions: (1) W

has converging arrows and none of W or its descendants are in Z, or (2) W does not have

converging arrows and W is in Z.
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For instance, in Fig. 1.3, {2} d-separates 7 and 0 since the only path from 7 to 0 is blocked

by {2}. This is because there is a node 2 in the path that does not have converging arrows

(condition (2) above) and is in {2}. As another example, consider nodes 4 and 3. These nodes

are not d-separated by {5}, since the path 4 − 5 − 6 − 0 − 3 between 4 and 3 is not blocked.

This is because in that path there is a node (5) that has converging arrows (from nodes 4 and

6) and it is in {5}.

Analogously to the undirected case, we say that a directed graph is faithful to (i.e., it is a

perfect map of) a probability distribution P if it satisfies

(X⊥⊥Y | Z)P ⇐⇒ 〈X,Y | Z〉D

and conversely, if a probability distribution P has a faithful graph it is called causal and it

satisfies, beside the general axioms, the following, more specific set of axioms:

(Symmetry) (X⊥⊥Y | Z) ⇐⇒ (Y⊥⊥X | Z)

(Decomposition) (X⊥⊥Y ∪W | Z) =⇒ (X⊥⊥Y | Z) ∧ (X⊥⊥W | Z)

(Composition) (X⊥⊥Y ∪W | Z) ⇐= (X⊥⊥Y | Z) ∧ (X⊥⊥W | Z)

(Intersection) (X⊥⊥Y | Z ∪W) ∧ (X⊥⊥W | Z ∪Y) =⇒ (X⊥⊥Y ∪W | Z)

(Weak Union) (X⊥⊥Y ∪W | Z) =⇒ (X⊥⊥Y | Z ∪W) (1.8)

(Contraction) (X⊥⊥Y | Z) ∧ (X⊥⊥W | Z ∪Y) =⇒ (X⊥⊥Y ∪W | Z)

(Weak Transitivity) (X⊥⊥Y | Z) ∧ (X⊥⊥Y | Z ∪ γ) =⇒ (X⊥⊥ γ | Z) ∨ (γ⊥⊥Y | Z)

(Chordality) (α⊥⊥β | γ ∪ δ) ∧ (γ⊥⊥ δ | α ∪ β) =⇒ (α⊥⊥β | γ) ∨ (α⊥⊥β | δ)

In the above, X, Y, Z and W are disjoint subsets of V, and α, β, γ and δ are distinct

single variables.

In the above,

We refer to these axioms as the specific directed axioms.

1.2.3 Assumptions

Graphical models, as well as the independence-based approach of learning such models

from data, are grounded on a sound formalism. For that reason below we explicitly present

the set of assumptions that we make in all remaining chapters of this thesis.
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• The input data set is an i.i.d. (independent and identically distributed) sample of the

underlying probabilistic model.

• We assume Faithfulness, i.e., that the underlying probability distribution has a perfect

map. This implies that the specific axioms of Eqs. (1.7) and Eqs. (1.8) hold (for undi-

rected and directed models respectively).

• For the operation of the algorithms we assume the existence of an independence query

oracle that can answer correctly statistical independence queries (see next section).

• We assume that there exist no hidden variables and no missing values. That is, the input

data set contains data for all the variables in the domain, and each data point has no

missing values.

These are standard assumptions that are needed for formally proving the correctness of

independence-based structure learning algorithms (Spirtes et al., 2000).

1.2.4 Independence Oracle Implementation

As mentioned above, this thesis addresses the problem of independence-based structure

learning of the graphical model of a domain from data. Independence-based algorithms operate

by conducting a series of conditional independence queries. For these we assume that an

independence-query oracle exists that is able to provide such information. This approach can

be viewed as an instance of a statistical query oracle (Kearns and Vazirani, 1994). In practice

such an oracle does not exist, but is frequently implemented approximately by a statistical

test evaluated on the data set (for example, this can be Pearson’s conditional independence

χ2 (chi-square) test (Agresti, 2002), Wilk’s G2 test, a mutual information test or the Bayesian

independence test of Margaritis (2005) etc.). In this work we used Wilk’s G2 test (Agresti, 2002)

and Margaritis’ Bayesian test. To determine conditional independence between two variables

X and Y given a set Z from data, the statistical test G2 (and any other independence test

based on hypothesis testing, e.g., the χ2 test) returns a p-value, which is the probability of

error in assuming that the two variables are dependent when in fact they are not. If the p-value
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of a test is p(X, Y | Z), the statistical test concludes independence if and only if 1−p(X, Y | Z)

is smaller than or equal to a confidence threshold α i.e.,

(X⊥⊥Y | Z) ⇐⇒ p(X, Y | Z) ≥ 1− α. (1.9)

Common values for α are 0.95, 0.99, and 0.90.

The computation of the p-value of some triplet t = (X,Y | Z) requires the construction of a

contingency table, which is a histogram containing a count for each possible value combination

w(t) of the variables W(t) = X∪Y ∪Z of triplet t. Each entry in the histogram contains the

number of data points in the input data set D whose values for the variables in W(t) match

the value combination w(t) corresponding to that entry. Let us consider an example of a

contingency table. For a domain with five binary variables {V1, V2, V3, V4, V5}, the contingency

table of triplet (V2, V4 | V5) has an entry for each combination of values (V2 = 0, V4 = 0, V5 = 0);

(V2 = 0, V4 = 0, V5 = 1); . . . (V2 = 1, V4 = 1, V4 = 1). A data point (V1 = 0, V2 = 1, V3 =

1, V4 = 0, V5 = 1) i.e., a row in the data set, would increment the count of entry (V2 = 1, V4 =

0, V5 = 1) by one.

The number of cells in a contingency table grows exponentially with the number of variables

involved in the table. Therefore, tests involving a large number of variables will produce sparse

contingency tables which result in unreliable tests. This is because the number of possible

configurations of the variables grows exponentially with the size of the test—for example,

there are 2n cells in a test involving n binary variables, and to fill such a table with one data

point per cell we would need a data set of at least exponential size i.e., N ≥ 2n. Exacerbating

this problem, more than one data point per cell is typically necessary for a reliable test: As

recommended by Cochran (1954), if more than 20% of the cells of the contingency table have

less than 5 data points the test is deemed unreliable. This exposes an important limitation of

independence-based algorithms, namely, their rapid degradation in quality with the size of the

tests it requires during its execution.
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1.2.5 Learning the Parameters

In Section 1.2.2 we established the semantics of graphical models in terms of the purely

qualitative notion of conditional independence. In this thesis we only address the problem of

structure learning, and so no further understanding is necessary. However, we briefly explain

the quantitative aspects of a graphical model for the sake of completeness, and also because it

better motivates our work.

This section address the problem of constructing a probability distribution that preserves

the dependency structure of an arbitrary graph G. For undirected models this problem has

been addressed by the theory of Markov random fields (Isham, 1981; Lauritzen, 1982), which

provides a method for constructing the Gibbs distribution for an arbitrary undirected graph G:

1. Identify the (maximal) cliques of G. A clique is a maximal subgraph of G whose nodes

are all adjacent to each other.

2. Let C(G) denote the set of all maximal cliques of graph G, and XC the set of variables

in clique C. Then, for each clique C ∈ C(G), define a potential function gC(xC) which

assigns a non-negative value to each assignment xC of variables XC .

3. Form the product P̃G(x1, . . . , xn) =
∏

C∈C(G)
gC(xC) of the potential functions over all

cliques in C(G).

4. Construct the Gibbs distribution by normalizing the product P̃G(x1, . . . , xn)

Pr(x1, . . . , xn) =
P̃G(x1, . . . , xn)

Z
. (1.10)

The normalization constant Z is usually called the partition function and is computed

by summing the product P̃G(x) over all possible value combinations of the variables in

the domain

Z =
∑

x1,...,xn

P̃G(x1, . . . , xn).

The Hammersley-Clifford theorem, an important result in the theory of MRFs, proves that

the general form of the Gibbs distribution of Eq. (1.10) satisfies the conditional independences
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encoded in the graph G = (V,E) i.e., for every node X ∈ V, the set of nodes adjacent to X

(denoted by N (X)), shields X from the rest of the variables, formally

∀X ∈ V, Pr(X | V − {X}) = Pr(X | N (X))

where Pr is defined by the Gibbs distribution of Eq. (1.10), and the equality holds for all

possible assignments of X, N (X), and V −N (X).

The general form of the Gibbs distribution introduced above presents some difficulties.

First, the meaning of the potential functions is difficult to discern. Second, the cost of com-

puting the partition function Z is exponential, as it requires a sum over all possible configu-

rations (a system with n binary variables has 2n possible configurations). Bayesian networks

present an alternative procedure for quantifying the model that overcomes these difficulties.

In Bayesian networks, the joint distribution Pr(x1, . . . , xn) is factored into a product of condi-

tional distributions using the well-known chain rule, i.e.

Pr(x1, . . . , xn) = Pr(xn | xn−1, . . . , x1) Pr(xn−1 | xn−2, . . . , x1) · · ·Pr(x3 | x2, x1) Pr(x2 | x1) Pr(x1)

=
∏

i

Pr(xi | xi−1, . . . , x1).

It has been proved (Pearl, 1988, p. 119) that

Pr(x1, . . . , xn) =
∏

i

Pr(xi | parents(xi)). (1.11)

where parents(X) denotes the set of variables whose nodes are the parents of the node corre-

sponding to variable X in the Bayesian network.

Therefore, one simply needs, for each variable Xi, the conditional probabilities P (xi |

parents(xi)) in order to fully quantify the model. Unfortunately, Markov networks do not have

an expression equivalent to Eq. (1.11), and thus must rely on the computationally expensive

Gibbs decomposition of Eq. (1.10) in order to fully quantify the model.
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CHAPTER 2. The GSIMN Algorithm

2.1 Introduction

In this chapter we introduce two related independence-based algorithms for structure learn-

ing: GSMN (Grow Shrink Markov Network learning algorithm) and and GSIMN (Grow

Shrink Inference-based Markov Network learning algorithm) (Bromberg et al., 2006, 2007).

To the best of our knowledge, the GSMN algorithm is the first independence-based structure

learning algorithm for Markov networks that has appeared in the literature. GSIMN extends

GSMN with an inference step that reduces the number of tests performed when compared to

GSMN without adversely affecting the quality of the output network.

The GSMN algorithm is an adaptation to Markov networks of the GS algorithm by Mar-

garitis and Thrun (2000), originally developed for learning the structure of Bayesian networks.

Until very recently, algorithms for structure learning were based on maximum likelihood esti-

mation which has been proved to be NP-hard for Markov networks. The independence-based

approach does not require the computation of likelihoods, and thus both GSMN and GSIMN

can compute the structure efficiently (as shown in our experiments).

GSMN is thus interesting and useful in itself, but we also use it as a point of reference of the

performance with regard to time complexity and accuracy achieved by GSIMN. With GSIMN,

we explored the possibility of exploiting Pearl’s axiomatic characterization of conditional in-

dependences (shown in Eqs. (1.7)) to improve the running time by reducing the number of

independence tests performed on data.

In the next section we present some preliminary concepts and some basic algorithms that

are useful to acquire an intuitive comprehension of the GSMN algorithm. We then present the

GSMN algorithm in Section 2.3, followed by the GSIMN algorithm in Section 2.5.
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2.2 Preliminaries

The concept of Markov blanket is central to many independence-based algorithms as it gives

a theoretically sound and straightforward procedure for learning the undirected structure of a

Markov network. Given the domain variables V, Pearl (Pearl, 1988, p. 97) defines the Markov

blanket MB(X) of a variable X ∈ V as the minimal subset S ⊆ V such that

(X⊥⊥V − S− {X} | S) and X /∈ S (2.1)

that is, none of the proper subsets of S satisfy Eq. (2.1).1

The Markov blanket can be interpreted as the smallest set of variables that shields X from

the influence of all other variables. Note that MB(X) always exists because (X⊥⊥S′ | X),

which holds trivially for every set S′ ⊆ V, guaranteeing that the set S = {X} satisfies Eq. (2.1).

The relation between Markov blankets and the structure of a Markov network is explained

by the following theorem (Pearl, 1988; Pearl and Paz, 1987).

Theorem 2.1. Every variable X ∈ V in a dependency model M satisfying Symmetry, Decom-

position, Intersection, and Weak Union (see Eqs. (1.6)) has a unique Markov blanket MB(X).

Moreover, MB(X) coincides with the set of vertices BM (X) adjacent to X in the model M .

In particular, the theorem is satisfied by every strictly positive distribution, since the

probabilistic dependence relation in any such distribution satisfies Symmetry, Decomposition,

Intersection, and Weak Union.

The theorem suggests a very simple algorithm for learning the structure of a Markov

network, shown in Alg. (1). This algorithm learns the Markov blanket of every variable in

the probabilistic model M , and links each of these variables with every member of its Markov

blanket.

Algorithm 1 relies on a subroutine for discovering the Markov blanket of the variables in

the domain. In Margaritis and Thrun (2000), Margaritis et. al. introduced the GS algorithm

1Pearl distinguishes between those subsets that are minimal, calling them Markov boundaries, and those that
are not necessarily minimal, calling them Markov blankets. Here we simplify our nomenclature by omitting this
distinction.
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Algorithm 1 Markov Blanket Structure Learning(V, M).

1: G←− (V,E) // Initialize structure of Markov network.

2: for all X ∈ V do

3: MB(X) ←− Discover Markov blanket of X in probabilistic model M (e.g., using GS

algorithm Alg.(2)).

4: for all Y ∈MB(X) do

5: add edge (X, Y ) to E

6: return G

Algorithm 2 GS(X,V, M).

1: S←− ∅.

2: while ∃Y ∈ V − {X} such that (Y 6⊥⊥X | S) do S←− S ∪ {Y }. [Growing Phase]

3: while ∃Y ∈ Ssuch that (Y⊥⊥X | S− {Y }) do S←− S− {Y }. [Shrinking Phase]

4: return S

shown in Alg. (2), an independence-based algorithm for learning the Markov blanket of any

input variable in the domain.

The GS algorithm maintains a set S, initialized empty, that will contain the Markov blanket

after the end of the shrink phase (line 4). The algorithm then proceeds in two stages, the grow

and shrink phases. During the grow phase (line 2) the algorithm augments S with every

variable Y that is found dependent on X conditioned on the current state of S. This process

guarantees that by the end of the grow phase, the set S (denoted SG) contains all members

of the Markov blanket. However, it may include some false positives that are non-members,

i.e., SG ⊇ MB(X). We can argue for the correctness of this stage in two parts. First we

see that Y ∈ MB(X) =⇒ Y ∈ SG: From Theorem 2.1, there must be an edge (X, Y ) so

no set of vertices can separate X from Y . In particular, the set S at the time Y is tested

against X during the grow phase, regardless of its content, cannot separate X from Y , and

thus Y is added to S (and not removed from S during the grow phase). The converse i.e.,

Y ∈ SG =⇒ Y ∈ MB(X), is not generally true, and for that reason there may be some

false positives added to S. These false positives are removed during the shrink phase. We

must convince ourselves that every false positive, and no true positive, is removed from SG,

i.e., Y /∈ MB(X) if and only if (Y⊥⊥X | S − {Y }) (the condition tested during the shrink
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phase). The “if” direction follows from the definition of Markov blanket and the fact that SG

is a superset of the Markov blanket. The “only if” direction follows directly from the definition

of Markov blanket.

Algorithm 1, with the GS algorithm as the subroutine for discovering Markov blankets,

forms the outline of GSMN, described in detail in the next section. The extra complexity of

GSMN comes from an initialization stage that computes a heuristics ordering of variables

for the grow and shrink phases, and some straightforward savings of tests caused by the

relationship between the Markov blanket of any two variables. Since the GS algorithm is

not our main contribution, we only sketched a proof of correctness above with the goal of

helping the reader gain a good intuition of the GS algorithm. Appendices A and B contains a

detailed proof for the correctness of GSMN and GSIMN, our main contributions.

2.3 The GSMN Algorithm

In this section we discuss our first algorithm, called GSMN (Grow-Shrink Markov Network

learning algorithm), for learning the structure of a MN. This algorithm extends the simple

algorithm (Alg. 1) described in the previous section with an initialization phase that computes

a heuristic for the ordering in which variables are tested in the grow and shrink phases, and

an extra phase, the propagation phase, during the Markov blanket discovery. Given as input

a data set D and a set of variables V, GSMN returns the set of nodes (variables) BX that are

adjacent to each variable X ∈ V; these completely determine the structure of the domain MN.

The algorithm is shown in two parts, the main part (Algorithm 3) and the independence test

(Algorithm 4).

The algorithm starts with an initialization phase. For reasons of clarity of presentation,

we explain the initialization phase near the end of this section. GSMN then executes its main

loop, in which it examines each variable in V (lines 8–24) according to the visit order π,

determined during the initialization phase. Each iteration of the main loop (lines 8–24) includes

three phases: the propagation phase (lines 11–14), the grow phase (lines 15–21), and the shrink

phase (line 22). The order that variables are examined during the grow phase of variable X is



28

Algorithm 3 GSMN(V, D).

1: /* Initialization. */
2: for all X,Y ∈ V,X 6= Y do pXY ← G(X,Y | ∅)
3: initialize π such that i < i′ iff avg

j

log(pπij) < avg
j

log(pπi′ j
)

4: for all X ∈ V do
5: BX ← ∅

6: initialize λX such that j < j′ iff pXλX
j

< pXλX
j′

7: remove X from λX

8: /* Main loop. */
9: while π not empty do

10: X ← dequeue(π)
11: /* Propagation phase. */
12: T←− {Y : Y was visited and X ∈ BY }
13: F←− {Y : Y was visited and X /∈ BY }
14: for all Y ∈ T ∪ F do remove Y from λX

15: /* Grow phase. */
16: S← ∅

17: while λX not empty do
18: Y ← dequeue(λX)
19: if pXY < (1− α) then
20: if ¬I(X,Y | S ∪T) then
21: S← S ∪ {Y }
22: /* Shrink phase. */
23: Y ∈ S such that I(X,Y | S ∪T− {Y }) do S← S− {Y }
24: BX ← S ∪T
25: return {BX : X ∈ V}

Algorithm 4 I(X, Y | S): Statistical test.

1: return (G(X,Y | S) ≥ 1− α)

called the grow order λX of variable X, also determined during the initialization phase.

During the propagation phase, all variables Y for which BY has already been computed,

i.e., all variables Y already visited, are removed from λX . From those, the ones whose set BY

contains X (set T), will be added to the final BX at the end. This is justified by the fact

that in undirected graphs, Y is in the Markov blanket of X if and only if X is in the Markov

blanket of Y . The remaining variables (set F) cannot be members of BX because there exists

some set of variables that has rendered them conditionally independent of X in a previous

step, and they are therefore omitted from consideration (removed from λX).

The grow phase of X proceeds by attempting to add each variable Y to the current set of
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hypothesized neighbors of X, contained in S∪T. T does not change during the whole visit of

X, while S is initially empty but grows by some variable Y during each iteration of the grow

loop of X if and only if Y is found dependent with X given the current set of hypothesized

neighbors S ∪ T (line 20). The condition pXY ≤ 1 − α (line 19) avoids an independence test

in the case that X and Y were found (unconditionally) independent during the initialization

phase, since by the axiom of Strong Union this implies X and Y are independent given any

conditioning set.

Due to the heuristic ordering that the variables are examined (determined by the priority

queue λX), at the end of the grow phase some of the variables in S might not be true neighbors

of X in the underlying MN—these are called false positives. This justifies the shrink phase of

the algorithm, which removes each false positive Y in S by testing for independence with X

conditioned on S ∪ T − {Y }. If Y is found independent of X, it cannot be a true neighbor

(i.e., there cannot be an edge X − Y ), and GSMN removes it from S. Assuming faithfulness

and correctness of the independence query results, by the end of the shrink phase BX contains

exactly the neighbors of X. A proof of correctness of GSMN is presented in Appendix A.

We now describe the initialization phase. As mentioned above, the order that variables are

examined in the main loop and the grow phase is completely determined by the visit order

π and grow orders λX , calculated during the initialization phase. These are implemented as

priority queues and are initially permutations of V (λX is a permutation of V−{X}) such that

the position of a variable in the queue denotes its priority e.g., π = [2, 0, 1] means that variable

2 has the highest priority (will be visited first), followed by 0 and finally by 1. Similarly, the

position of a variable in λX determines the order it will be examined during the grow phase

of X.

During the initialization phase the algorithm computes the strength of the dependence

between each pair of variable X and Y , as given by the unconditional p-value G(X, Y | ∅) for

each pair of variables X 6= Y , denoted by pXY in the algorithm. (In practice, the logarithm of

the p-values is computed, which allows greater precision in domains where some dependencies

may be very strong or very weak.) In particular, for the visit order π, the algorithm gives higher
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priority to (visits earlier) those variables with a lower average log p-value (line 3), indicating

stronger dependence. This average is defined as:

avg
Y

log(pXY ) =
1

|V| − 1

∑

Y 6=X

log(pXY ).

For the growing order λX of variable X, the algorithm gives higher priority to those variables Y

whose p-value (or equivalently the log of the p-value) with variable X is smaller (line 6). This

ordering is a heuristic, justified by the intuition of a well-known “folk-theorem” (as Koller and

Sahami (1996) puts it) that states that probabilistic influence or association between attributes

tends to attenuate over distance in a graphical model. This suggests that a pair of variables

X and Y with low unconditional p-value are less likely to be directly linked. Note that the

computational cost for the calculation of pXY is low due to the empty conditioning set.

2.3.1 Independence Graphs

We can demonstrate the operation of GSMN graphically by the concept of the independence

graph, which we now introduce. We define an independence graph to be an undirected graph

in which conditional independences and dependencies between single variables are represented

by one or more annotated edges between them. A solid (dotted) edge between variables X and

Y annotated by Z represents the fact that X and Y have been found dependent (independent)

given Z. If the conditioning set Z is enclosed in parentheses then this edge represents an

independence or dependence that was inferred from Eqs. (1.7) (as opposed to computed from

statistical tests). Shown graphically:

X Y
Z

(X 6⊥⊥Y | Z)

X Y
Z

(X⊥⊥Y | Z)

X Y
(Z)

(X 6⊥⊥Y | Z) (inferred)

X Y
(Z)

(X⊥⊥Y | Z) (inferred)

For instance, in Figure 2.2, the dotted edge between 5 and 1 annotated with 3, 4 represents

the fact that (5⊥⊥ 1 | {3, 4}). The absence of an edge between two variables indicates the

absence of information about the independence or dependence between these variables under

any conditioning set.
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Figure 2.1 Example Markov network. The nodes represent variables in

the domain V = {0, 1, 2, 3, 4, 5, 6, 7}.

Figure 2.2 Illustration of the operation of GSMN. The figure shows the

growing phase of two consecutively visited variables 5 and 3 as

dictated by visit ordering π. Note that the the growing order

of variable 3, which was λ3 = [3, 4, 1, 6, 2, 7, 0] before the prop-

agation phase, has changed to λ3 = [2, 4, 7, 6, 0, 1] (see text).

Example 2.1. This example illustrates the operation of GSMN in the domain whose underlying

Markov network is shown in Figure 2.1. Figure 2.2 shows the independence graph at the end

of the grow phase of the first two variables in the visit order π (5 and 3). We do not discuss

in this example the initialization phase of GSMN. Instead, we assume that the visit (π) and

grow (λ) orders are as shown in the figure.

Variable 5 is examined first by the algorithm (i.e., first in queue π). According to vertex

separation on the underlying network (Figure 2.1), variables 3, 4, 6, and 7 are found dependent
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with 5 during the growing phase i.e.,

¬I(5, 3 | ∅),

¬I(5, 4 | {3}),

¬I(5, 6 | {3, 4}),

¬I(5, 7 | {3, 4, 6})

and are therefore successively added to S. Note here T is empty since 5 is the first variable to

be visited. Variables 1, 2, and 0 are found independent i.e.,

I(5, 1 | {3, 4}),

I(5, 2 | {3, 4, 6}),

I(5, 0 | {3, 4, 6, 7}),

and are not incorporated into S.

The final value of S at the end of the growing phase (and beginning of the shrink phase)

of variable 5 is S = {3, 4, 6, 7}. Among these, variables 3, 6 and 7 are found dependent with 5

during the shrink phase, i.e.,

¬I(5, 7 | {3, 4, 6})

¬I(5, 3 | {4, 6, 7})

¬I(5, 6 | {3, 4, 7}),

and are therefore not removed from S (the shrink phase is not shown in the independence graph

of Figure 2.2). Variable 4 (a false positive) is found independent with 5 i.e.,

I(5, 4 | {3, 6, 7}),

and is therefore removed from S. By the end of the shrink phase, the set BX of variable 5 is set

to the value of S∪T, which equals {3, 6, 7} in our example. We can verify that it matches the

correct Markov blanket (the set of neighbors) of variable 5 in the underlying domain considered

in this example, shown in Figure 2.1.
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According to the visit order π, variable 3 is the next one to be visited. During its propagation

phase, variable 5 is removed from λ3 and placed in T since 3 ∈ B5, making T equal to {5}.

Thus, during the growing phase of 3, all tests are conditioned on S∪{5}, and during the shrink

phase all tests on variable Y are conditioned on S ∪ {5} − {Y }.

During the growing phase of variable 3, variables 2, 7, and 0 are found dependent with 3,

i.e.,

¬I(3, 2 | ∅ ∪ {5}),

¬I(3, 7 | {2} ∪ {5}),

¬I(3, 0 | {2, 7} ∪ {5}),

and thus are added to S. Variables 4, 6, and 1 are found independent, i.e.,

I(3, 4 | {2, 7} ∪ {5}),

I(3, 6 | {2, 7} ∪ {5}),

I(3, 1 | {2, 7, 0} ∪ {5}),

and are therefore not added to S.

The final value of S at the end of the growing phase (and beginning of the shrink phase) of

variable 3 is S = {2, 7, 0}. During the shrink phase of variable 3, variables 0 and 2 are found

dependent of 3, i.e.,

¬I(3, 0 | {2, 5, 7})

¬I(3, 2 | {0, 5, 7}),

and are therefore not removed from S. Variable 7 is a false positive and it is found independent

with 3, i.e.,

I(3, 7 | {0, 2, 5}),

and is therefore removed from S. By the end of the shrink phase, BX = S ∪ T = {0, 2, 5},

which matches the neighborhood of variable 3 in the underlying domain of Figure 2.1.
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2.4 The Triangle Theorem

In this section we present a theorem that is used in the subsequent GSIMN algorithm.

As will be seen, the main idea behind the GSIMN algorithm is to attempt to decrease the

number of tests done by exploiting the properties of the conditional independence relation,

i.e., Eqs. (1.7). These properties can be seen as inference rules that can be used to derive new

independences from ones that we know to be true. A careful study of these axioms suggests

that only two simple inference rules, stated in the Triangle theorem below, are sufficient for

inferring most of the useful independence information that can be inferred by a systematic

application of the inference rules. This was confirmed by our experiments in Section 2.6.

Theorem 2.2 (Triangle theorem). Given Eqs. (1.7), for every variable X, Y , W and sets Z1

and Z2 such that {X, Y, W} ∩ Z1 = {X, Y, W} ∩ Z2 = ∅,

(X 6⊥⊥W | Z1) ∧ (W 6⊥⊥Y | Z2) =⇒ (X 6⊥⊥Y | Z1 ∩ Z2)

(X⊥⊥W | Z1) ∧ (W 6⊥⊥Y | Z1 ∪ Z2) =⇒ (X⊥⊥Y | Z1).

We call the first relation the “D-triangle rule” and the second the “I-triangle rule.”

Proof. We are using the Strong Union and Transitivity of Eqs. (1.7) as shown or in contrapos-

itive form.

(Proof of D-triangle rule):

• From Strong Union and (X 6⊥⊥W | Z1) we get (X 6⊥⊥W | Z1 ∩ Z2).

• From Strong Union and (W 6⊥⊥Y | Z1) we get (W 6⊥⊥Y | Z1 ∩ Z2).

• From Transitivity, (X 6⊥⊥W | Z1 ∩ Z2), and (W 6⊥⊥Y | Z1 ∩ Z2), we get (X 6⊥⊥Y | Z1 ∩ Z2).

(Proof of I-triangle rule):

• From Strong Union and (W 6⊥⊥Y | Z1 ∪ Z2) we get (W 6⊥⊥Y | Z1).

• From Transitivity, (X⊥⊥W | Z1) and (W 6⊥⊥Y | Z1) we get (X⊥⊥Y | Z1).
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Figure 2.3 Independence graph depicting the Triangle theorem. Edges in

the graph are labeled by sets and represent conditional inde-

pendences or dependencies. A solid (dotted) edge between X

and Y labeled by Z means that X and Y are dependent (in-

dependent) given Z. A set label enclosed in parentheses means

the edge was inferred by the theorem.

We can represent the Triangle theorem graphically using the independence graph construct

of Section 2.3. Figure 2.3 depicts the two rules of the Triangle theorem using two independence

graphs.

The Triangle theorem can be used to infer additional conditional independences from tests

conducted during the operation of GSMN. An example of this is shown in Figure 2.4(a), which

illustrates the application of the Triangle theorem to the example presented in Figure 2.2(a).

The independence information inferred from the Triangle theorem is shown by curved edges

(note that the conditioning set of each such edge is enclosed in parentheses). For example,

independence edge (4, 7) can be inferred by the D-triangle rule from the adjacent edges (5, 4)

and (5, 7), annotated by {3} and {3, 4, 6} respectively. The annotation for this inferred edge is

{3}, which is the intersection of the annotations {3} and {3, 4, 6}. An example application of

the I-triangle rule is edge (1, 7), which is inferred from edges (5, 1) and (5, 7) with annotations

{3, 4} and {3, 4, 6} respectively. The annotation for this inferred edge is {3, 4}, which is the

intersection of the annotations {3, 4, 6} and {3, 4}.

2.5 The GSIMN Algorithm
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Figure 2.4 Illustration of the operation of GSIMN. The figure shows the

grow phase of two consecutively visited variables 5 and 7. Con-

trary to GSMN (Figure 2.2), the variable visited second is not

3 but 7, according to the change in the visit order π in line 31.

The set of variables enclosed in parentheses correspond to tests

inferred by the Triangle theorem using two adjacent edges as

antecedents. For example, the results (76⊥⊥3 | ∅), (76⊥⊥4 | {3}),

(76⊥⊥6 | {3, 4}), and (76⊥⊥5 | {3, 4, 6}) in (b) were not executed

but inferred from the tests done in (a).

In the previous section we saw the possibility of using the two rules of the Triangle theorem

to infer the result of novel tests during the grow phase. The GSIMN algorithm (Grow-Shrink

Inference-based Markov Network learning algorithm), introduced in this section, uses the Tri-

angle theorem in a similar fashion to extend GSMN by inferring the value of a number of tests

that GSMN executes, making their evaluation unnecessary.

GSIMN is shown in Algorithm 5. It works in a fashion similar to GSMN, but differs in

three important ways, tailored to maximize the number of inferences that are made possible

through the use of the Triangle theorem. First, the grow test conditions on S instead of S∪T.

Second, while visiting variable X, GSIMN updates the visit order and the grow order of every

variable Y ∈ λX (the π and λY queues respectively). (Since X /∈ λX , this excludes the grow

order of X itself.) Third, and most importantly, it uses a new test procedure I ′ (shown in

Algorithm 6), that attempts to infer the value of the independence test that is provided as its

input by either Strong Union or the Triangle theorem. If this succeeds, I ′ returns the value
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Algorithm 5 GSIMN(V, D).

1: /* Initialization. */
2: for all X,Y ∈ V,X 6= Y do
3: pXY ← G(X,Y | ∅)
4: t← (pXY > α)
5: KXY ← (∅, t)
6: KY X ← (∅, t)
7: initialize π such that i < i′ ⇐⇒ avg

j

log(pπij) < avg
j

log(pπi′ j
)

8: for all X ∈ V do
9: BX ←− ∅

10: initialize λX such that j < j′ ⇐⇒ pXλX
j

< pXλX
j′

11: remove X from λX

12: /* Main loop. */
13: while π not empty do
14: X ← dequeue(π)
15: /* Propagation phase. */
16: T←− {Y : Y was visited andX ∈ BY }
17: F←− {Y : Y was visited andX /∈ BY }
18: for all Y ∈ T ∪ F remove Y from λX

19: /* Grow phase. */
20: S← ∅

21: while λX not empty do
22: Y ← dequeue(λX)
23: if pXY < (1− α) then
24: if ¬I ′(X,Y | S) then
25: S← S ∪ {Y }
26: /* Change grow order of Y . */
27: changepos(λY ,X, 0)
28: for W = S|S|−2 to S0 do
29: changepos(λY ,W, 0)
30: /* Change visit order. */
31: for W = S|S|−1 to S0 do
32: if W ∈ π then
33: changepos(π,W, 0)
34: goto 35
35: /* Shrink phase. */
36: for Y = S|S|−1 to S0 do
37: if I(X,Y | S ∪T− {Y }) then
38: S← S− {Y }
39: BX ← S ∪T
40: return {BX : X ∈ V}

inferred, otherwise it defaults to a statistical test on the data set (as I does). For the purpose

of assisting in the inference process, the GSIMN and I ′ algorithms maintain a knowledge base

KXY for each pair of variables X and Y , containing the outcomes of all tests done so far

between X and Y (from data or inferred). Each knowledge base is created empty during the
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Algorithm 6 I ′(X, Y | S): Calculate independence test result by inference,

if possible. Record test result in the knowledge base.

1: /* Attempt to infer dependence by Strong Union. */
2: if ∃ (A, false) ∈ KXY such that A ⊇ S then
3: return false

4: for all W ∈ S do
5: if ∃ (A, false) ∈ KXW such that A ⊇ S ∧ ∃ (B, false) ∈ KWY such that B ⊇ S then
6: /* Infer dependence by the D-triangle rule. */
7: add (A ∩B, false) to KXY and KY X

8: return false

9: /* Attempt to infer independence by Strong Union. */
10: if ∃ (A, true) ∈ KXY such that A ⊆ S then
11: return true

12: for all W ∈ S do
13: if ∃ (A, true) ∈ KXW such that A ⊆ S ∧ ∃ (B, false) ∈ KWY such that B ⊇ A then
14: /* Infer independence by the I-triangle rule. */
15: add (A, true) to KXY and KY X

16: return true

17: /* Else do statistical test on data. */
18: t← G(X,Y | S)
19: add (S, t) to KXY and KY X

20: return t

initialization phase of GSIMN (lines 5 and 6) and is maintained within the test procedure I ′.

The first difference between GSMN and GSIMN, namely the conditioning on S instead of

S ∪ T, is straightforward. We now describe the second difference, namely the new ordering

used in GSIMN. After the end of the grow phase for variable X, the new visit order π (set

in lines 31–34) dictates that the next variable to be visited after X is the last to be added

to S during the growing phase that has yet to be visited (i.e., still in π). For example, in

Figure 2.4, the variable visited after 5 is 7 instead of 3 (as was dictated by the initial π and

as would have been done in GSMN). The change in order is conducted by the subroutine

changepos(q, Y, j) which moves Y from its current position in queue q to position j. For

example, if q = [5, 3, 7, 0, 1, 6, 2, 4], then after applying changepos(q, 7, 0) the queue becomes

q = [7, 5, 3, 0, 1, 6, 2, 4].

For every Y ∈ λX , the change in the growing order λY occurs inside the grow phase of the

currently visited variable X (lines 26–29). If, for some variable Y , the algorithm reaches line

25, i.e., pXY < (1− α) and I ′(X, Y,S) = false, then X and all the variables that were found

dependent with X before Y (i.e., all variables currently in S) are promoted to the beginning of
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the grow order λY . This is illustrated in Figure 2.4 for variable 7, in which the grow order of

7 changes from λ7 = [2, 6, 3, 0, 4, 1, 5] to λ7 = [3, 4, 6, 5, 2, 0, 1] after the grow phase of variable

5 is complete; the variables 5, 6, 4 and 3 were promoted (in that order) to the beginning of

the queue. The rationale for this is the observation that this maximizes the number of tests

inferred at a future step—we explain this in more detail below.

The third difference between GSMN and GSIMN is the function I ′, shown in Algorithm 6,

which replaces function I of GSMN. I ′ attempts to infer the independence value of its input

triplet (X, Y | S) by applying a single step of backward chaining using the Strong Union and

Triangle rules i.e., it searches the knowledge base K for antecedents of instances of rules that

have the input triplet (X, Y | S) as consequent. The Strong Union rule is used in its direct

from as shown in Eqs. (1.7) and also in its contrapositive form. The direct form can be used to

infer independences, and therefore we refer to it as the I-SU rule hereon. In its contrapositive

form, the I-SU rule becomes (X 6⊥⊥Y | S ∪W) =⇒ (X 6⊥⊥Y | S), referred to as the D-SU rule

since it can be used to infer dependencies. According to the D-Triangle and D-SU rules, the

dependence (X 6⊥⊥Y | S) can be inferred if the knowledge base {KXY : X, Y ∈ V} contains

1. a test (X 6⊥⊥Y | A) with A ⊇ S, or

2. tests (X 6⊥⊥W | A) and (W 6⊥⊥Y | B) for some variable W , with sets A and B both

supersets of S,

respectively. According to the I-Triangle and I-SU rules, the independence (X⊥⊥Y | S) can be

inferred if the knowledge base contains

3. a test (X⊥⊥Y | A) with A ⊆ S, or

4. tests (X⊥⊥W | A) and (W 6⊥⊥Y | B) for some variable W , with A ⊆ S and B ⊇ A,

respectively.

A subtle but important issue that must be discussed is the order of application of the I-SU,

D-SU, I-Triangle and D-Triangle rules within the function I ′. Given an independence-query

oracle, the order of application should not matter—assuming there are more than one rules or
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inferring the value of an independence, all of them are guaranteed to produce the same value due

to the soundness of the axioms of Eqs. (1.7) (Pearl, 1988). As we mentioned however, in practice

the oracle is implemented by statistical tests conducted on data, which can be incorrect. Of

particular importance is the observation that false independences are more likely to occur than

false dependencies. One example of this is the case where the data sets small or dependencies

are weak—in this case any pair of variables connected in the underlying true network structure

may be incorrectly deemed independent if the paths between them are long enough. While

this is not always true when multiple paths between the variables exist (that can cancel the

influence of each other) in practice this only happens rarely and weakly dependent variables

are common, especially in large domains (large numbers of variables) with sparse structure. On

the other hand, false dependencies are much more rare—the confidence threshold of α = 0.95

of a statistical test tells us that the probability of a false dependence by chance is only 5%.

Assuming i.i.d. data for each test, the chance of multiple false dependencies is even lower,

decreasing exponentially fast. This practical observation i.e., that dependencies are typically

more reliable than independences, provide the rationale for the way the I ′ algorithm works. In

particular, I ′ prioritizes the application of rules whose antecedents contain dependencies first

i.e., the D-Triangle and D-SU rules, followed by the I-Triangle and I-SU rules. In effect, this

uses statistical results that are typically known with greater confidence before ones that are

usually less reliable.

Similarly to GSMN, it can be shown that under the same assumptions each set BX returned

by the GSIMN algorithm contains exactly the neighbors of X. The proof of correctness of

GSIMN is based on correctness of GSMN and is presented in detail in Bromberg et al. (2007).

2.6 Experimental Results

We evaluated the GSMN and GSIMN algorithms on both artificial and real-world data

sets. Through the experimental results presented below we show that both algorithms require

a polynomial number of tests (w.r.t. the number of variables in the domain) to learn the

structure. Also, that a simple application of Pearl’s inference rules in GSIMN algorithm
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results in a significant reduction in the number of tests performed when compared to GSMN

without adversely affecting the quality of the output network.

We report the following quantities:

• Weighted number of tests. The weighted number of tests executed by GSMN and

GSIMN reflects the time complexity of the algorithm. A statistical test on triplet (X, Y |

Z) is proportional to the size N of the data set and the number of variables involved in

it i.e., O(N(|Z| + 2)) (and is not exponential in the number of variables involved as a

näıve implementation might assume). Therefore, a polynomial number of tests implies a

polynomial time complexity.

• Quality of the resulting network. We measure quality in two ways.

– Accuracy. We compare the result (true or false) of a number of conditional

independence tests on the network output (using vertex separation), to the same

tests performed either on the structure of the underlying model (when that is known

i.e., in the artificial data experiments) or on the data (when the underlying model

is unknown, i.e., for real-world data sets).

– Hamming distance. The Hamming distance between the output network and the

structure of the underlying model is another measure of the quality of the output

network, when the actual network that was used to generate the data is known.

The Hamming distance is defined as the number of “flipped” edges between these

two network structures.

In the next section we present results for domains in which the underlying probabilistic

model was known. This is followed by real-world data experiments where no model structure

was available.

2.6.1 Known-Model Experiments

We first evaluated our algorithm in artificial domains in which the structure of the under-

lying model, called true network or true model, is known. This allowed (i) a systematic study
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of its behavior under varying conditions of domain sizes n and amount of dependencies (reflect

in the number of edges m in the true network), and, (ii) a better evaluation of quality of the

output networks because the true model is known. True networks were generated randomly

by selecting the first m = τ
(
n
2

)
pairs in a random permutation of all possible edges, τ being a

connectivity parameter.

We conducted two types of experiments using known network structure: Exact learning

experiments and sample-based experiments, presented in this order below.

2.6.1.1 Exact Learning Experiments

In this section we show the results of experiments for which conditional independence tests

were conducted directly on the true network through vertex-separation. This presents two

benefits: (i) it ensure faithfulness and correctness of the independence tests, which allows the

evaluation of the algorithms under their assumptions for correctness; and (ii) these tests can

be performed much faster than actual statistical tests on data, allowing the evaluation of our

algorithms in large networks (up to 100 variables).

We first report the weighted number of tests executed by GSMN and GSIMN. Our results

are summarized in Figure 2.5, which shows the ratio between the weighted number of tests
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of GSIMN and GSMN. One hundred true networks were generated randomly for each pair

(n, τ), and the figure shows the mean value. For large domains (n ≥ 20), we see that the

reduction in weighted number of tests stays approximately constant with increasing domain

size n, depending only on the average degree parameter τ . The reductions for large n are

approximately 5%, 20%, 30%, and 38% for τ = 1, 2, 4, and 8 respectively, demonstrating the

benefit of GSIMN vs. GSMN in terms of number of tests executed.

2.6.1.2 Sample-based Experiments

In these sets of experiments we evaluated GSMN and GSIMN on data sampled from the

true model. This allows a more realistic assessment of the performance of our algorithm in

terms of number of tests required. We therefore performed experiments on data sets sampled

from known Markov networks using Gibbs sampling.

In the exact learning experiments only the structure of the true network was required,

generated randomly in the fashion described above. For sampled data experiments however,

we also need to specify the network parameters. For each random network, the parameters

determine the strength of dependencies among connected variables in the graph. Following

Agresti (2002), the strength of the probabilistic influence between two binary variables X and

Y can be measured by the log-odds ratio defined as

θXY = log
Pr(X = 0, Y = 0)Pr(X = 1, Y = 1)

Pr(X = 0, Y = 1)Pr(X = 1, Y = 0)
.

The network parameters were generated randomly so that the log-odds ratio between every pair

of variables connected by an edge in the graph has a specified value. In this set of experiments,

we chose θ = 2 for every such pair.

In our experiments we compare the weighted number of tests, accuracy and Hamming

distance of the network structures output by GSIMN or GSMN vs. the true network structure.

Figure 2.6 shows the weighted number of tests of GSIMN vs. GSMN for |D| = 20000

and domains n = 20, 50, and 75 and average degree parameters τ = 1, 2, 4, and 8. In all

cases GSIMN shows a reduced weighted number of tests. For sparse networks i.e., τ = 1, this

reduction is larger than 50% for all three domain sizes, a reduction much larger than the one
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Figure 2.6 Weighted number of tests of GSIMN vs GSMN at |D| = 20000,

for domains sizes n = 20, 50, and 75 and average degree para-

meters τ = 1, 2, 4, and 8.

observed for the exact learning experiments. For τ = 4 and τ = 8 the reduction observed

for n = 20 and n = 50 is smaller than the one observed for exact learning, but substantial

nonetheless.

Testing for conditional independence in these experiments was conducted using χ2 statis-

tical tests on data sampled from the true model using a Gibbs sampler. For small data sets,

these statistical tests may be unreliable, and thus the recovered network may differ from the

true one. We therefore report the estimated accuracy of the output network on independence

tests and its Hamming distance to the true network. The estimated independence accuracy

of a network produced by GSMN or GSIMN was calculated by comparing the result (true or

false) of a number of conditional independence tests on the network (using vertex separation)

to the same tests performed on the true network (also using vertex separation). This approach

is similar to estimating accuracy in a classification task over unseen instances but with inputs

here being triplets (X, Y,Z) and the class attribute being the value of the corresponding con-
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Figure 2.7 Estimated independence accuracy of GSIMN and GSMN for

domain sizes n = 20, 50, 75 and average degrees τ = 1, 2, 4, 8.

ditional independence test. Since the number of possible tests is exponential, we estimated

the independence accuracy by sampling 10,000 triplets (X, Y,Z) randomly, evenly distributed

among all possible conditioning set sizes m ∈ {0, . . . , n− 2} (i.e., 10000/(n− 1) tests for each

m). Each of these triplets was constructed as follows: First, two variables X and Y were

drawn randomly from V. Second, the conditioning set was determined by picking the first m

variables from a random permutation of V−{X, Y }. Denoting by T this set of 10,000 triplets,

by t ∈ T a triplet, by Itrue(t) the result of a test performed on the true network, and by Iout(t)
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the result of a test performed on the output network produced by either GSMN or GSIMN,

the estimated accuracy is defined as:

̂accuracy =
1

|T |

∣∣∣∣
{

t ∈ T | Iout(t) = Itrue(t)
}∣∣∣∣.

Figure 2.7 shows plots of the accuracy of GSIMN and GSMN vs. the data set size |D|.

We see that the accuracy of GSIMN approaches that of GSMN for large enough data sets,

for all domain sizes n = 20, 50, 75 and average degrees τ = 1, 2, 4, 8 with the exception of

(n = 50, τ = 4) and (n = 75, τ = 4) which exhibit some modest discrepancies. These results

indicate that the savings in the weighted number of tests obtained by using GSIMN over GSMN

is not at the expense of accuracy in most scenarios.

Figure 2.8 shows plots of the normalized Hamming distance between the output network of

GSIMN and GSMN and the true network. The normalization factor is
(
n
2

)
, the total number

of node pairs. These plots show that the Hamming distance of GSIMN is comparable to the

one of GSMN for all domain sizes n = 20, 50, 75 and all average degrees τ = 1, 2, 4, 8 with the

exception of (n = 50, τ = 4), in which approximately 7% more edges are incorrect in GSIMN

than in GSMN, and (n = 75, τ = 4), where this difference is less than 4%. This reinforces the

claim that inference done by GSIMN has a small impact on the reduction in quality of the

output networks.

2.6.2 Real-World Data Experiments

While artificial data set studies have the advantage allowing a more controlled and sys-

tematic study of the performance of the algorithms (see previous section), experiments on

real-world data are necessary for a more realistic assessment of their performance. Real data

are more challenging because they may come from non-random topologies (e.g., a possibly

irregular lattice in many cases of spatial data) and the underlying probability distribution may

not be faithful.

We conducted experiments on a number of data sets obtained from the UCI machine

learning data set repository (D.J. Newman and Merz, 1998a). For each data set and each
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Figure 2.8 Ratio of the Hamming distance between the output network of

GSIMN and GSMN and the true network, normalized by
(
n
2

)
,

for domain sizes n = 20, 50, 75 and average degrees τ = 1, 2, 4, 8.

algorithm, we report the weighted number of conditional independence tests conducted to

discover the network and the accuracy, as defined below.

Accuracy for real data is defined similarly to the case for sampled data. The main difference

is that we compare the result (true or false) of a number of conditional independence tests on

the network (using vertex separation) to the result of the same tests performed on the data set

(using a χ2 test). This is necessary because for real data the true model is unknown. Denoting
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Table 2.1 Weighted number of tests and accuracy for several real-world

data sets. For each evaluation measure, the best performance

between GSMN and GSIMN is indicated in bold. The number

of variables in the domain is denoted by n and the number of

data points in each data set by N .

Data set Weighted #(tests) Accuracy

# name n N GSMN GSIMN GSMN GSIMN

1 echocardiogram 14 61 1152 524 0.646 0.665

2 ecoli 9 336 186 101 0.719 0.694

3 lenses 5 24 59 45 0.500 0.500

4 hayes-roth 6 132 105 60 0.584 0.584

5 hepatitis 20 80 1001 416 0.604 0.606

6 cmc 10 1473 296 232 0.779 0.757

7 balance-scale 5 625 80 59 1 1

9 flag 29 194 2316 1209 0.535 0.550

10 tic-tac-toe 10 958 344 184 0.473 0.683

11 bridges 12 70 563 253 0.482 0.706

12 car 7 1728 174 161 0.699 0.666

13 monks-1 7 556 96 42 0.919 0.919

14 haberman 5 306 68 45 0.691 0.691

15 nursery 9 12960 362 342 0.627 0.599

16 crx 16 653 1118 561 0.436 0.679

17 imports-85 25 193 2409 1631 0.424 0.371

18 dermatology 35 358 5004 2723 0.535 0.502

19 adult 10 32561 578 438 0.604 0.604

20 alarm 37 20001 5164 2667 0.704 0.774

21 bands 38 277 11237 2687 0.508 0.504

22 connect-4 43 65535 15275 8359 0.443 0.473

by T the set of 10,000 triplets, by t ∈ T a triplet, by Idata(t) the result of a test performed

on the data, and by Iout(t) the result of a test performed on the output network produced by

either GSMN or GSIMN, the accuracy is defined as:

̂accuracy =
1

|T |

∣∣∣∣
{

t ∈ T | Inetwork(t) = Idata(t)
}∣∣∣∣. (2.2)

For each of the data sets, Table 2.1 shows the detailed results for accuracy and the weighted

number of tests for GSMN and GSIMN. It also serves as key for each data set index appearing

in Figure 2.9, which plots two quantities in the same graph for these real-world data sets:

the ratio of the weighted number of tests of GSIMN versus GSMN and the difference of the
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and difference between the accuracy of GSIMN and GSMN on

real data sets. Ratios smaller that 1 and positive bars indicate

an advantage of GSIMN over GSMN. The numbers in the x-axis

are indices of the data sets as shown in Table 2.1.

accuracy between GSIMN and GSMN. The numbers in the x-axis are indices to the data sets as

shown in Table 2.1. For each data set, an improvement of GSIMN over GSMN corresponds to a

number smaller than 1 for the ratios and a positive histogram bar for the accuracy differences.

We can observe that GSIMN reduced the weighted number of tests on every data set, with

maximum savings of 75%. Moreover, in 8 out of 22 data sets GSIMN resulted in improved

accuracy, with 3 of these (11, 12, and 17) showing a considerable improvement (close to 20%)

in addition to an approximate average savings of 50% in the weighted number of tests. Among

the 14 remaining data sets, 7 resulted in the same accuracy, and the other 7 resulted in decrease

in accuracy of less than 5% in the worst case.

2.7 Summary

In this chapter we presented two algorithms, GSMN and GSIMN, for learning the structure

of a Markov network of a domain from data using the independence-based approach. We

evaluated their performance through measurement of the weighted number of tests they require

to learn the structure of the network and the quality of the networks learned from both artificial

and real-world data sets. GSIMN showed a decrease in the weighted number of tests of up



50

to 38% for difficult (large) artificial domains and up to 75% for real-world data, and output

network quality comparable to that of GSMN, with some cases showing improvement. In

addition, GSIMN was shown to be nearly optimal in the number of tests executed compared

to GSIMN-FCH, which uses an exhaustive search to produce all independence information that

can inferred from Pearl’s axioms. Some directions of future research include an investigation

into the way the topology of the underlying Markov network affects the number of tests required

and quality of the resulting network, especially for commonly occurring topologies such as grids.

Another research topic is the impact on number of tests of other visit and grow orderings of

the variables.
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CHAPTER 3. PFMN algorithm

As in the previous chapter, we focus here on the task of learning the structure of Markov

networks (MNs), a subclass of graphical models, from data in discrete domains. In this

chapter we introduce PFMN (Particle Filter Markov Network) (Bromberg and Margaritis,

2007), a novel independence-based algorithm for the induction of Markov network structures.

Existing independence-based algorithms such as the GSMN and GSIMN algorithms discussed

in the previous chapter present the disadvantage of being potential inefficient with regard to

the number of tests required to learn the structure due to the relatively rigid (predefined) order

in which tests are performed.

We address this problem through a Bayesian particle filtering approach, which uses a

population of Markov network structures to maintain the posterior probability distribution

over them, given the outcomes of the tests performed so far. We avoid the inefficiencies of

previous approaches by greedily selecting, at each step, the optimally informative from a pool

of candidate tests according to information gain. As such the approach can be seen as an

instance of active learning (Tong and Koller, 2001).

The rest of the chapter is organized as follows: In the next section we present some notation,

followed by a description of a generative model considered for our problem. Following that,

we present our approach including a detailed explanation of PFMN, our main algorithm. We

then present experimental results and conclude with a summary of our approach.

3.1 Notation

In this section we modify our notation slightly to facilitate the exposition of new concepts

introduced in this chapter. We denote by V the set of n = |V| random variable in the domain.
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We use capital letters A, B, . . . to denote domain random variables and bold letters for sets

of variables (e.g., S). The space of all structures (given V) is denoted by X and the space

of all conditional independence tests by Y. The structure of a Markov network consists of an

undirected graph x = (V, E) whose nodes represent the random variables in V and its set of

edges E encodes the set of conditional independences in the domain through vertex separation.

As usual, conditional independence of A and B given S is denoted by (A⊥⊥B | S). In this

chapter we also assume Faithfulness. Therefore, the set of conditional independences implied

by the structure of a MN (through vertex separation) are exactly those that hold in the actual

probability distribution of the domain i.e., (A⊥⊥B | S) if and only if A and B are separated

in the MN graph after removing all nodes in S (and all edges adjacent to them). Faithfulness

excludes certain distributions that are unlikely to happen in practice, and is needed for proofs

of correctness. It is therefore a common assumption of independence-based algorithms for

graphical model discovery, and as such we also assume it here.

As described later in our main algorithm, we maintain a populations of structures at each

time step t; slightly abusing our notation we denote these populations as Xt. We denote

a sequence of t tests Y1, . . . , Yt by Y1:t and a sequence of value assignments to these tests

(independence or dependence, corresponding to true and false respectively) by y1:t.
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3.2 Generative Model over Structures and Tests

For an input data set d, our approach uses the posterior probability over structures Pr(X |

d), X ∈ X , to learn the structure of the underlying model as explained in more detail in the next

section. For that probability to be calculated in a principled way, we use a generative model

that involves random variables X, Y1, Y2, . . . , Yt and D. Variable X models the structures and

its domain is X , the set of all possible structures. Variable Yi models a single conditional

independence test and its domain is binary, with Yi = true (Yi = false) corresponding to the

state of the world in which test Yi evaluates to independence (dependence). Finally, variable

D models the data sets, whose domain is the set of all possible data sets. However, in all

our calculations we assume it is already assigned a value, the actual input data set d, e.g.,

Pr(X | D = d) or Pr(X | d).

Our assumption is that the tests are the sufficient statistics for the structure i.e., there is

no information in the data set d beyond the value of the tests as far as structure is concerned.

This stems from the fact that the structure X faithfully encodes the independences in the

domain. Note that this assumption is not particular to our approach, but is implicit in any

independence-based approach. Our generative model only formalizes it and makes it explicit.

The generative model that encodes this assumption is shown in Fig. 3.1 (left), where X

and D are d-separated by the tests Y1, . . . , Yt. However, one problem with this model is that

the posterior over structures Pr(X | d) cannot be computed because, according to the model,

Pr(X | d) =
∑

y1:t
Pr(X | Y1:t = y1:t, d) Pr(Y1:t = y1:t | d), which requires the computation of

Pr(Y1:t = y1:t | d), the joint outcome of a set of tests, currently an unsolved problem (i.e., we can

only compute the probability of the outcome of a single test). We therefore assume the model

shown in Fig. 3.1 (right), which contains multiple data sets D1, . . . , Dt (abbreviated D1:t). In

this model the data sets D1 through Dt are independent given tests Y1:t. This allows the model

to be solved analytically because now Pr(Y1:t = y1:t | d) ∝ Pr(d | Y1:t = y1:t) Pr(Y1:t = y1:t),

and the first factor decomposes as the product
∏t

i=1 Pr(di | Yi = yi). Furthermore, the factors

Pr(di | Yi = yi) can be computed by known procedures such as the discrete version of the

Bayesian test of Margaritis (2005), which computes Pr(Yi = yi | di) by analytically calculating
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the data likelihood Pr(di | Yi = yi) of two competing multinomial models corresponding to

yi = true and yi = false (the independent and the dependent one), i.e., Pr(di | Yi = true)

and Pr(di | Yi = false). A detailed derivation of an expression for computing the posterior

Pr(X | d) is presented in the next section.

In practice we do not have more than one data set, and therefore we use the same data set

for all tests i.e., di = dj , i 6= j. Thus, the model depicted on Fig. 3.1 (right) is used only as an

approximation to overcome the lack of an exact solution described above. As we will show in

the experiments section, this approximation works well in both artificial and real world data

sets.

Under this model, the posterior probability over structures must now be computed given

data sets d1:t, i.e., Pr(X | d1:t), which we abbreviate as Prt(X). This calculation is presented

in the next section. Also, in our calculations below we use the conditional entropy of X given

the set of tests Y1:t and the data sets d1:t, H(X |Y1:t, d1:t), similarly abbreviated as Ht(X |Y1:t).

3.2.1 Posterior Distribution over Structures

To learn the MN structure of a domain from data, we employ a Bayesian approach, calcu-

lating the posterior probability Prt(x) = Pr(X = x | d1:t) of a structure x ∈ X given data sets

d1:t. We now derive an expression for this posterior.

By Bayes’ law we have:

Pr(x | d1:t) ∝ Pr(x) Pr(d1:t | x)

which, by law of total probability over variables Y1:t equals

Pr(x | d1:t) ∝ Pr(x)
∑

y1:t

Pr(d1:t | y1:t, x) Pr(y1:t | x). (3.1)

According to our Faithfulness assumption, the structure x encodes exactly those indepen-

dences that hold in the underlying probability distribution, i.e., under this assumption the

state of a set of conditional independence tests Y1:t is completely determined by x. In terms

of probabilities, this is equivalent to saying that Pr(Y1:t | X = x) ∈ {0, 1}. That is, there is a

single assignment y1:t for the set of tests Y1:t whose probability, conditioned on x, is non-zero.
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We denote this assignment by yx
1:t, and we say that x is consistent with an assignment y1:t

when this assignment equals yx
1:t. We can summarize these ideas by the following expression,

Pr(Y1:t = y1:t | X = x) = δ(y1:t, y
x
1:t), (3.2)

where δ(a, b) is the Kronecker delta function that equals 1 if and only if a is equal to b, and 0

otherwise.

Even though a structure determines the assignment yx
1:t of a sequence of tests Y1:t, the

reverse does not hold in general i.e., given an assignment y1:t, there may be more than one

structure consistent with it. If two structures x and x′ are consistent with the same assignment

y1:t we say they are equivalent and we denote this fact by x ∼y1:t x′. This equivalence relation

partitions the space X into equivalence classes, one for each assignment y1:t, which we denote

by {y1:t}, and we define it formally by

{y1:t} =
{
x ∈ X

∣∣x is consistent with y1:t

}
. (3.3)

In what follows, whenever we need to emphasize that structure x belongs to some equivalence

class we denote it by {yx
1:t}.

Returning to the derivation of the posterior distribution, we apply Eq. (3.2) to Eq. (3.1)

to obtain Pr(y1:t | x) = δ(y1:t, y
x
1:t) and thus only the term yx

1:t survives in the sum i.e.,

Pr(x | d1:t) ∝ Pr(x) Pr(d1:t | y
x
1:t, x).

Finally, using the generative model of the previous section, we obtain

Pr(x | d1:t) ∝ Pr(x)
t∏

i=1

Pr(di | y
x
i ). (3.4)

The constant of proportionality in the above equation is independent of x and thus can

be calculated by a sum over all structures in X . Since this space is super-exponential in

size, this requires an approximation. In the next section we present a principled procedure to

approximate this and other quantities that require a summation over X .

One can partition the space X of all structures in
(
n
2

)
subspaces Xh, h = 1, . . . ,

(
n
2

)
, each

containing structures of exactly h edges. The prior Pr(X) is assumed to be uniform over each
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subspace Xh of X , where Xh =
{

x = (V, E) ∈ X
∣∣∣ |E| = h

}
consists of all structures with

exactly h edges. Therefore, the prior probability of structure x = (V, E) is

Pr(X = x) =
1

|X
|E|
|
. (3.5)

As the size |Xh| of a subspace Xh is equal to
((n

2)
h

)
, some subspaces may be exponentially larger

than others e.g. X1 vs. X(n

2)/2. This choice for the prior is made to facilitate the sufficient

exploration of small subspaces such as X1 or X(n

2)
.

The quantity Pr(di | y
x
i ) in Eq. (3.4) is the likelihood of the data given the assignment yx

i to

test Yi. To compute these quantities we use the Bayesian test described in Margaritis (2005).

This test calculates and compares the likelihoods of two competing multinomial models (with

different numbers of parameters), namely Pr(dt | Yt = yt), for yt ∈ {true, false}.

We describe now our approach for solving the structure learning problem.

3.3 Particle Filtering Approach

Traditionally, the problem of learning the structure of a Markov network consists on finding

a sequence of triplets Y ⋆
1:t⋆ of minimum cost (defined later in the chapter), such that only a single

structure x⋆ is consistent with the outcome y1:t⋆ of performing an independence test on these

triplets. This is always possible due to our assumption of Faithfulness, which guarantees the

existence of a single structure consistent with the results of all possible tests in the domain. In

our probabilistic framework however, both outcomes true or false of a test may be assigned a

non-zero probability, and therefore structures consistent with both assignments are maintained.

The situation in which a single structure x⋆ is consistent with the tests can be represented in

this framework with an extreme form for the posterior that concentrates all the probability mass

in x⋆, i.e., Prt⋆(X = x⋆) = 1 and Prt⋆(X 6= x⋆) = 0. This state of the posterior distribution

has entropy 0, i.e. H(X | Y ⋆
1:t⋆ , d1:t⋆) = 0. We can therefore summarize the problem of learning

a structure in this framework by the following two steps:

1. Finding a sequence of tests Y ⋆
1:t⋆ of minimum cost such that H(X | Y ⋆

1:t⋆ , d1:t⋆) = 0, and

2. Finding the (unique) structure x⋆ such that Pr(X = x⋆ | d1:t⋆) = 1.
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In practice, the above procedure presents considerable difficulties because:

• The space of structures X is super-exponential: |X | = 2(n

2). Thus, the exact computation

of the entropy Ht(X | Y1:t), a sum over all x ∈ X , is intractable.

• The space of candidate tests Y is also at least exponential in size: there are
(
n
2

)(
n−2
m

)

tests (A⊥⊥B | S) with |S| = m, and m ranges from 0 to n − 2. Moreover, for a given

number of tests t, there exist
(
|Y|
t

)
possible candidate test sequences Y1:t to consider.

We address the first issue using a particle filtering approach. At each step t, we maintain a

population Xt of candidate MN structures (called particles) for the purpose of representing

the posterior probability distribution over structures given the outcomes of tests performed

so far. In this way, all required quantities, such as posterior probability Prt(x) or conditional

entropy Ht(X | Y1:t), can be estimated by simple averaging over the particle population Xt.

The theory of Monte Carlo sampling provides a principled procedure for approximating these

summations using a sample {x(i)}Ni=1 of the space X . In our equations, we used the particle

population Xt for such a sample.

Formally, the Monte Carlo principle (Andrieu et al., 2003, p. 5) states that, given an i.i.d.

sample {x(i)}Ni=1 of probability distribution p(x), it is the case that,

IN (f) =
1

N

N∑

i=1

f(x(i))
a.s.

−−−−−→
N−→∞

I(f) =
∑

x∈X

f(x)p(x). (3.6)

The estimate IN (f) is unbiased and, by the strong law of large numbers, almost surely

(a.s.) converges to I(f). To illustrate, let us approximate the normalization constant k of

Eq. (3.4) (i.e., Pr(x | d1:t) = Pr(x) Pr(d1:t|x)
k ), a summation over all structures in X , using the

set of particles Xt = {x(i)}Ni=1 at time t as follows:

k =
∑

x∈X

Pr(x) Pr(d1:t | x) ≈
1

N

N∑

i=1

Pr(d1:t | x
(i)).

The second issue (choosing the next test to perform) is addressed using a greedy search

approach. At each step t + 1 of our algorithm, we choose as the next test to perform the

member Yt+1 of Y that minimizes the expected entropy Ht(X | Y1:t, Yt+1), penalized by a
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factor proportional to its cost. Since Y is exponential in size, the minimization is performed

through a heuristic search approach. The next section explains our main algorithm, called

PFMN, and following that we present in detail the test selection algorithm.

3.3.1 The PFMN Algorithm

Our algorithm is called PFMN (Particle Filter Markov Network structure learner), and

is shown in Algorithm 7. At each time step t, the algorithm maintains a set Xt containing N

structure particles.

Initially (line 1), each structure in X0 is generated by sampling from the prior distribution

Pr(x) of Eq. (3.5). This is done by first generating N structures randomly, and then “moving”

each structures M0 times using the Metropolis-Hastings algorithm, shown in Algorithm 10 and

explained in detail in Section 3.3.4 (we used M0 = 500 in our experiments). As explained later,

this algorithm requires that a proposal distribution q(x⋆ | x) be provided as parameter. As

proposal we used the same proposal used during the particle filter moves of line 9, explained

later in Section 3.3.4.

Algorithm 7 Particle Filter Markov Network (PFMN) algorithm.
x = PFMN(N,M, q(X⋆ | X))

1: X0 ←− sample N independent particles distributed according to prior Pr(x) (c.f. Eq.(3.5)) using
the Metropolis-Hastings algorithm (Algorithm 10).

2: t←− 0
3: loop
4: Yt+1 ←− compute arg max

(A,B)
arg max

S
scoret(A,B | S) using Algorithm 8

5: Y1:t+1 ←− Y1:t ∪ {Yt+1}
6: pT ←− Pr(dt+1 | Yt+1 = t) /* Perform test on data. */
7: pF ←− Pr(dt+1 | Yt+1 = f) /* Perform test on data. */
8: Update Prt+1(X) from pT and pF using Eq. (3.4).
9: Xt+1 ←− PF(Xt,M,Prt+1(X), q(X⋆ | X))

10: if Ht+1(X | Y1:t+1) = 0 then
11: return arg max

x∈Xt
Prt(x) /* Return most probable particle. */

12: t←− t + 1

At each time t during the main loop of the algorithm (lines 3–12), the test Yt+1 = (A⋆, B⋆ |

S⋆) ∈ Y that optimizes a score function is selected. Since for each pair of variables (A, B) ∈ V×

V the space of possible conditioning sets is exponential (equaling the power set of V−{A, B}),
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this optimization is performed by heuristic search. Both the score function and the optimization

algorithm are described in detail in the next section.

The PFMN algorithm continues by computing the data likelihoods of the optimal test Yt+1

in lines 6 and 7, which are used to update the posterior over structures and obtain the new

posterior Prt+1(X) using Eq. (3.4). With this updated distribution, the new set of particles

Xt+1 is computed in line 9, using the particle filter algorithm described later in section 3.3.4.

The PFMN algorithm terminates when the entropy Ht(X | Y1:t) (estimated over the popu-

lation Xt) is zero. This occurs when each equivalence class contains at most one particle. The

algorithm then returns the structure x in Xt with the highest posterior probability.

3.3.2 Optimal Test Selection Algorithm

We now explain the algorithm for selecting the next test to perform used in line 4 of

the PFMN algorithm. The algorithm is shown in Alg. 8. It takes as input the set V of

variables in the domain and a score function score. Since the space of tests Y is super-

exponential in size, i.e., for each pair of variables (A, B) ∈ V × V the space of possible

conditioning sets is exponential (equal to ℘(V − {A, B}), the power set of V − {A, B}), this

optimization is performed by the heuristic search shown in Algorithm 8, which selects the test

Yt+1 = (A⋆, B⋆ | S⋆) ∈ Y that optimizes (locally) the score function.

In the main loop (line 3) the algorithm iterates over all pairs (A, B) such that A, B ∈ V

and A 6= B. For each such pair it performs a hill-climbing search in the space ℘(V − {A, B})

(lines 8–14) starting with S = ∅ and iteratively moving to the “neighbor” set with maximum

score (loop of lines 12-13), until no such neighbor exists (i.e., until a global optimum is reached

in line 14). During this procedure, the “neighbors” Σk of a current point S are defined to be

all sets S′ ⊆ V − {A, B} that are Hamming distance k from S. We can represent a subset S

of V − {A, B} as a binary string b = [b1, . . . , b|V−{A,B}|] of length |V − {A, B}|, with bi = 1

if and only if the i-th element of V − {A, B} is in S. Under this representation of a set, the

Hamming distance between two sets is the number of bits that differ among their respective

binary string representations. The set Σk of such neighbors of S is constructed in line 10.
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Initially, the hill-climbing procedure is run for k = 1, and k is incremented by 1 (up to a

maximum of k = 4) while the initial test (i.e., (A, B | ∅)) is a local maximum. The rationale

for this extra loop is to improve the chances of getting out of the initial state, when that state

is a local maximum. At the end of the iteration for (A, B), the algorithm compares the score

of test (A, B | S) against (A⋆, B⋆ | S⋆), the optimal test so far, and chooses the highest-scoring

one. Therefore, at the end of the main loop, (A⋆, B⋆ | S⋆) is optimal among all pairs, and the

algorithm returns this triplet as the optimal one.

Algorithm 8 Computes test with optimal score. (A⋆, B⋆ | S⋆) =

optimalTest(V, Xt, score)

1: (A⋆, B⋆ | S⋆)← nil.

2: /* Find overall optimal test by performing a search over all pairs of variables. */

3: for all A, B ∈ V, A 6= B do

4: /* Search for conditioning set that optimizes score(A, B | S). */

5: k ← 0

6: repeat /* while k ≤ 4 */

7: k ← k + 1

8: S← ∅

9: repeat /* Find local maximum for sets k “flips” away. */

10: Σk ← {S
′ ∈ ℘(V − {A, B})

∣∣∣ hamming(S′,S) = k} /* Σk is set of neighbors of

S. */

11: S0 ← S

12: for all S′ ∈ Σk do /* Find optimal neighbor */

13: if score(A, B | S′) > score(A, B | S) then S← S′

14: until (S = S0) /* If set S has not changed, its a local maximum, stop. */

15: until (k > 4 ∨ S 6= ∅) /* Continue while the initial set (∅) is a local maximum. */

16: /* Record current test (A, B | S) if its better than optimal */

17: if
(

score(A, B | S) > score(A⋆, B⋆ | S⋆)
)

then (A⋆, B⋆ | S⋆)← (A, B | S)

18: return (A⋆, B⋆ | S⋆)

3.3.3 Score Function

We now proceed to define the score function given as input to the test optimization algo-

rithm. The main idea behind our choice of the score function is to select greedily the test that

brings us closer to the termination condition of zero entropy. We therefore define the score of
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a candidate test Yt+1 as follows:

scoret(Yt+1) = −
Ht(X | Y1:t, Yt+1)

[W (Yt+1)]
β

(3.7)

where the factor W (Y ) denotes the cost of Y , which we take to be proportional to the number

of variables involved in the test, and β is a constant parameter provided by the user. This

factor is used to discourage expensive tests. Ht(X | Y1:t, Yt+1) is the entropy over structures

given the (not yet performed) test Yt+1, and is equal to:

Ht(X | Y1:t, Yt+1) = Ht(X | Y1:t)− IGt(Yt+1). (3.8)

In this expression IGt(Yt+1) denotes the information gain of candidate test Yt+1. The deriva-

tion of Eq. (3.8) proceeds as follows. By the definition of conditional entropy we have that:

Ht(X | Y1:t, Yt+1) = −
∑

x

∑

y1:t

∑

yt+1

Prt(x, y1:t, yt+1) log [Pr(x | y1:t, yt+1)] .

Applying the chain rule to the first factor, and the Bayes rule to the input of the logarithm,

the above equals

−
∑

x

∑

y1:t

∑

yt+1

Prt(yt+1 | x, y1:t)Prt(x, y1:t) log

[
Pr(yt+1 | y1:t, x) Pr(x | y1:t)

Prt(yt+1 | y1:t)

]
. (3.9)

According to Eq. (3.2), the factor Prt(yt+1 | x, y1:t) of Eq. (3.9) equals δ(yx
t+1, yt+1), there-

fore

Ht(X | Y1:t+1) = −
∑

x

∑

y1:t

Prt(x, y1:t) log

[
Prt(x | y1:t)

Prt(yx
t+1 | y1:t)

]
. (3.10)

We now split the logarithm of the quotient into a difference of logarithms to obtain

−
∑

x

∑

y1:t

Prt(x, y1:t) log [Prt(x | y1:t)] +
∑

x

∑

y1:t

Prt(x, y1:t) log
[
Prt(y

x
t+1 | y1:t)

]
.

According to the definition of conditional entropy, the first term is equivalent to Ht(X | Y1:t)

i.e.,

Ht(X | Y1:t+1) = Ht(X | Y1:t) +
∑

x

∑

y1:t

Prt(x, y1:t) log
[
Prt(y

x
t+1 | y1:t)

]
.

The second term is the information gain of candidate test Yt+1 given all information at

time t, and we denote it by IGt(Yt+1) i.e.,

IGt(Yt+1) = −
∑

x

∑

y1:t

Prt(x, y1:t) log
[
Prt(y

x
t+1 | y1:t)

]
.
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We can simplify this further by applying the chain rule to Prt(x, y1:t) to obtain Prt(y1:t |

x) Prt(x). The above expression then becomes

IGt(Yt+1) = −
∑

x∈X

Prt(x) log Prt(y
x
t+1 | y

x
1:t). (3.11)

since only the term y1:t = yx
1:t survives in the summation over tests, all others being equal to

zero according to Eq. (3.2).

As with all other quantities that requires a summation over the space of particles X , we

can approximate the above expression for the information gain using Eq. (3.6), i.e.,

IGt(Yt+1) ≈ −
1

N

N∑

i=1

log f(Prt(x
(i)))

where f(Prt(x)) denotes the quantity Prt(y
x
t+1 | y

x
1:t). This quantity is a function that depends

solely on Prt(X) as the following calculation demonstrates:

Prt(y
x
t+1 | y

x
1:t) =

Prt(y
x
t+1, y

x
1:t)

Prt(yx
1:t)

=

∑
x′∈{yx

t+1,yx
1:t}

Prt(x
′)

∑
x′∈{yx

1:t}
Prt(x′)

(3.12)

obtained by applying the law of total probability over x and keeping only those structures in the

summation that are consistent with the assignments yx
1:t and yx

t+1 of Y1:t and Yt+1 respectively

(again by Eq. (3.2)).

Eq. (3.12) has an interesting and intuitive interpretation: at each time t, the posterior

probability of a test Y being true (false), given some assignment y1:t of tests Y1:t, equals the

total posterior probability mass of the structures in the equivalence class {y1:t} (c.f. Eq.(3.3))

that are consistent with Y = true (Y = false), normalized by the posterior probability mass

of the class {y1:t}. Under this interpretation, it is not hard to prove that information gain is

maximized by a test that splits evenly the mass of each equivalence class.

3.3.4 Particle filter for structures

We explain now the particle filter algorithm used in PFMN. A particle filter (Andrieu et al.,

2003) is a sequential Markov-Chain Monte-Carlo (MCMC) method that uses a set of samples,

called particles, to represent a probability distribution that may change after each observation

in a sequence of observations. At each step, an observation is performed and a new set of
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particles is obtained from the set of particles at the previous step. The new set represents the

new (posterior) distribution given the sequence of observations so far. One of the advantages

of this sequential approach is the often drastic reduction of the cost of sampling from the new

distribution, relative to alternative (non-sequential) sampling approaches. In our case, the

domain is X and particles represent structures. Observations correspond to the evaluation of

a single conditional independence test on data.

Algorithm 9 Particle filter algorithm. X ′′ = PF (X , M, f, q)

1: Prt(X)←− f(X)

2: for m = 1 to M do

3: for all particles x ∈ X do

4: w(x)←− Prt(x) /* Compute weights. */

5: for all particles x ∈ X do

6: w̃(x)←− w(x)P
x′∈X w(x′) /* Normalize weights. */

7: /* Resample particles in X using w̃ as the sampling probabilities. */

8: X ′ ←− resample(X , w̃)

9: /* Move each particle in X ′ once using Metropolis-Hastings and distr. Prt(X). */

10: X ′′ ←− ∅

11: for all x ∈ X ′ do

12: X ′′ ←− X ′′ ∪M-H(x, 1, Prt, q).

13: return X ′′

Algorithm 10 Metropolis-Hastings algorithm. x′ = M-H (x,M, p, q)

1: x(0) ←− x
2: for i = 0 to M − 1 do
3: u ∼ U[0,1].

4: x⋆ ∼ q(x⋆ | x(i)).

5: if u < A(x(i), x⋆) = min
{
1, p(x⋆)q(x(i)|x⋆)

p(xi)q(x⋆|x(i))

}
then

6: x(i+1) ←− x⋆

7: else
8: x(i+1) ←− x(i)

9: x′ ←− x(M)

10: return x′

The particle filter algorithm, shown in Algorithm 9, is used in line 9 of PFMN to transform

population Xt into Xt+1. This is done in a sequence of two steps, resampling (lines 3–8) and

moves (lines 10-12), that are repeated M times in the main loop (lines 2–12) (in our experiments
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we used M = 20). The resampling step quickly re-distributes the existing particles to better

reflect the new distribution, but it may result in a sample that represents only a small fraction

of the space of structures, a problem that is exacerbated at each new iteration. The MCMC

step address this problem by allowing particles to explore novel regions of the space using

Metropolis-Hastings “moves” (more later).

The change in the probability distribution from Prt(X) to Prt+1(X) is reflected in a

“weight.” Intuitively, this weight measures the amount of probability mass represented by

the particle. Let us explain this in more detail. A representative sample generated from dis-

tribution Prt(X) has, on average, a number of particles per x proportional to Prt(X). It is

therefore the number of particles at structure x that models the amount of probability mass

of x. In this case the weights are the same for all particles, and thus are not considered when

sampling from a single distribution. In sequential MCMC, the goal is to use the sample Xt

as a starting point in the search for Xt+1. In this case, the sample of Prt(X) may not be a

representative sample of Prt+1(X). We therefore assign weights to particles to accommodate

this difference. The procedure assigns a weight w(x) to each particle x ∈ Xt equal to Prt+1(x),

the probability mass of x in the new distribution (line 4). The normalized weights (line 6)

are used as a probability in the resampling step (line 8), which generates a set of particles

distributed according to the new distribution by selecting |Xt| particles randomly and with

replacement from Xt, proportional to the value of w̃(x).

During the move phase, all particles are moved (lines 10–12) through one pair of pro-

posal/acceptance steps (i.e., M = 1) using the Metropolis-Hastings (M-H) algorithm, an

instance of the class of MCMC algorithms, shown in Alg. 10 (Andrieu et al., 2003). The M-H

algorithm requires that Prt(X) and a proposal distribution q(X⋆ | X) be provided as para-

meters. Prt(X) has already been addressed above in Eq. (3.4). We now explain the proposal

distribution used in our algorithm. We consider a “random walk” proposal q(x⋆ | x) that gen-

erates a sample x⋆ from x by iteratively inverting each edge of x with probability α. Thus, if h

denotes the Hamming distance between structures x and x⋆, and m = n(n−1)/2, where n is the

number of nodes (same for both x and x⋆), we have that q(x⋆ | x) = q(x | x⋆) = αh(1−α)m−h.
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With this proposal, the quotient q(x(i)|x⋆)

q(x⋆|x(i))
in line 5 of the Metropolis-Hastings algorithms is

equal to one for all particles x(i). Also, the probability of inverting h edges follows a binomial

distribution, and thus the expected number of inversions is αm. In our experiments, we use a

value for α such that on average, only one edge is inverted per move, i.e., α = 1/m.

A well-designed proposal q(X⋆ | X) i.e., one that ensures convergence to the posterior

distribution Prt(X), must satisfy the requirements of aperiodicity and irreducibility (Andrieu

et al., 2003). The above proposal q satisfies both requirements: it is aperiodic since it always

allows for rejection, and irreducible since its support is the entire set of structures X .

This concludes the explanation of our approach. In the following section we present and

discuss results that demonstrate its practical value.

3.4 Experiments

Our main objective in this chapter is to prove the viability of PFMN as an alternative

to GSIMN for GSMN by showing it requires a smaller weighted number of tests to learn the

networks of Markov networks while maintaining or improving their accuracy. As such, we

compared PFMN against GSIMN as well as GSMN. We conducted two group of experiments.

In the first group we conducted experiments on domains for which the true model was generated

randomly, and thus it was known. In the second group the experiments were conducted on real-

world data sets, for which the underlying true model was unknown. The results confirm PFMN

outperforms both GSMN and GSIMN while producing networks with comparable accuracy,

with few exceptions. Results for the known-model and real-world experiments are described

below in Sections 3.4.1 and 3.4.2, respectively.

In all these experiments we report the weighted number of tests and their accuracy. The

weight of each test is used to account for the execution times of tests with different conditioning

set sizes, and is taken to be the number of variables involved in each test. To obtain the

quality of the recovered network, we measure accuracy as the fraction of unseen conditional

independence tests that are correct i.e., we compare the result of each test on the resulting

structure (using vertex separation) with the true value of the test (calculated using vertex



66

separation in the true model for artificial domains or statistical tests on the data for real-world

domains). We say more on this below.

3.4.1 Known-model Experiments

We first evaluated our algorithm in artificial domains in which the structure of the un-

derlying model, called true network, is known. This allowed (i) a systematic study of its

behavior under varying conditions of domain sizes n and amount of dependencies (reflected

in the number of edges m in the true network) and, (ii) a better evaluation of quality of the

output networks because the true model is known. True networks were generated randomly

by selecting the first mτ = τ n
2 pairs in a random permutation of all possible edges. The factor

1/2 is necessary because each edge contributes to the degree of two nodes.

Two types of known-model experiments were conducted. In one, information on underlying

independences were obtained by vertex separation on the true network and thus are 100%

accurate. Results of these experiments are presented in the next section. In the second type

of experiments information of the underlying independences were obtained through statistical

tests performed on data sampled from the true network (using a Gibbs sampler). We used

the Bayesian test of Margaritis (2005) for all three algorithms. Also, in all known-model

experiments we considered the following values for parameters of PFMN: M = 20 for the

number of Metropolis-Hasting moves, α = 1/
(
n
2

)
for the probability of edge reversal in the

proposal distribution (as explained in earlier in the chapter, this value of α was chosen so that

on average the state of a single edge is inverted per move), and β = 2 for the penalizing factor

of the score (c.f. Eq. (3.7)). The remaining parameters vary for different experiments.

3.4.1.1 Exact Learning Experiments

Figures 3.2 and 3.3 show the results of the exact learning experiments, where the ground

truth comes from conditional independence tests conducted directly on the true network

through vertex separation i.e., the outcomes of tests are always correct. Figure 3.2 shows

the absolute value of the weighted number of tests conducted by PFMN compared to both



67

 0

 100

 200

 300

 400

 500

 600

100050025010050

Weighted Cost of PFMN, GSMN and GSIMN, n=16, τ = 1, D=0

W
C

 R
at

io

N (# of particles)

wc(GSMN)
wc(GSIMN)
wc(PFMN)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

100050025010050

Weighted Cost of PFMN, GSMN and GSIMN, n=20, τ = 1, D=0

W
C

 R
at

io

N (# of particles)

wc(GSMN)
wc(GSIMN)
wc(PFMN)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

100050025010050

Weighted Cost of PFMN, GSMN and GSIMN, n=16, τ = 2, D=0

W
C

 R
at

io

N (# of particles)

wc(GSMN)
wc(GSIMN)
wc(PFMN)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

100050025010050

Weighted Cost of PFMN, GSMN and GSIMN, n=20, τ = 2, D=0

W
C

 R
at

io

N (# of particles)

wc(GSMN)
wc(GSIMN)
wc(PFMN)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

100050025010050

Weighted Cost of PFMN, GSMN and GSIMN, n=16, τ = 4, D=0

W
C

 R
at

io

N (# of particles)

wc(GSMN)
wc(GSIMN)
wc(PFMN)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

100050025010050

Weighted Cost of PFMN, GSMN and GSIMN, n=20, τ = 4, D=0
W

C
 R

at
io

N (# of particles)

wc(GSMN)
wc(GSIMN)
wc(PFMN)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

100050025010050

Weighted Cost of PFMN, GSMN and GSIMN, n=16, τ = 8, D=0

W
C

 R
at

io

N (# of particles)

wc(GSMN)
wc(GSIMN)
wc(PFMN)

Figure 3.2 Comparisons of the weighted number of tests required by

GSMN, GSIMN, and PFMN to learn a Markov networks

in the exact learning case for varying number of particles

N = 50, 100, 250, 500, and 1000. The two columns correspond

to true networks with n = 16 and 20 variables and the different

rows to varying connectivity parameters τ = 1, 2, 4, and 8.

GSMN and GSIMN for domain sizes n = 16 (left column) and n = 20 (right column), a num-

ber of connectivities (τ = 1, 2, 4, and 8), and an increasing number of structure particles N .

Up to ten true networks were generated randomly for each pair (n, τ), and the figure shows

the mean value.
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Figure 3.3 Accuracy of the Markov networks output by PFMN in

the exact learning case for varying number of particles

N = 50, 100, 250, 500, and 1000 and varying connectivity pa-

rameters τ = 1, 2, 3, 4, 8.

We can see in Figure 3.2 that for large N the weighted cost of PFMN is lower than that

of GSIMN and GSMN for all domain sizes and connectivities, reaching savings of up to 85%

for n = 20 and τ = 1. The cases of τ = 4 and τ = 8 shows the difficulty of PFMN to perform

better than GSIMN and GSMN for small N . This can be explained by the fact that the

number of structures with connectivity τ grows exponentially as the number of edges mτ = τ n
2

in the network approach 1
2

(
n
2

)
(from either side), i.e., the middle point between a totally sparse

and totally connected network, making the search task in PFMN more difficult. For n = 16,

1
2

(
n
2

)
= 60, and the number of edges for τ = 4 and 8 are m4 = 32 and m8 = 64, respectively.

For n = 20, 1
2

(
n
2

)
= 85, and the number of edges for τ = 4 and 8 are m4 = 40 and m8 = 80.

PFMN is an approximate algorithm, and thus even for the case of exact tests it may

produce a network different that the true one. We thus measure the estimated accuracy of the

networks produced by PFMN. This accuracy was calculated using Eq. (2.2), reproduced here

for convenience:

̂accuracyPFMN =
1

|T |

∣∣∣∣
{

t ∈ T | IPFMN(t) = Itrue(t)
}∣∣∣∣.

where t ∈ T denotes a triplet, Itrue(t) denotes the result of a test performed on the true

network, and IPFMN(t) denotes the result of a test performed on the output network produced

by PFMN. This accuracy definition compares the result (true or false) of a number of
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conditional independence tests on the network (using vertex separation) to the same tests

performed on the true network (also using vertex separation). For this calculation, we sampled

randomly a set T of 2,000 triplets (A, B,S) evenly distributed among all possible conditioning

set sizes m ∈ {0, . . . , n − 2} (i.e., 2000/(n − 1) tests for each m). Each of these triplets was

constructed as follows: First, two variables A and B were drawn randomly from V. Second, the

conditioning set was determined by picking the first m variables from a random permutation

of V − {A, B}.

Fig. 3.3 shows that even though the accuracies ̂accuracyPFMN of PFMN are not 1, in most

cases they show an increasing trend for large values of N , surpassing 90% in all but few cases

(n = 20, τ = 2, 4).

3.4.1.2 Sampled data experiments

In this set of experiments we evaluated PFMN on data sampled from the true model. This

allows a more realistic assessment of the performance of our algorithm in terms of number of

tests required and accuracy of its output network. We therefore performed experiments on

data sets sampled from known Markov networks using Gibbs sampling.

In the exact learning experiments only the structure of the true network was required,

generated randomly in the fashion described above. For sampled data experiments however,

we also need to specify the network parameters. The network parameters were generated

randomly with the strength of dependencies among connected variables regulated by a user

input parameter θ as explained in detail in Section 2.6.1.2 of the previous chapter. The data

sets used in the PFMN experiments were sampled using θ = 1.

As in the exact case, we conducted experiments to compare the performance of PFMN

against both GSMN and GSIMN. We report the weighted number of tests required by these

algorithms and the accuracy of the output network. In the sample experiments, the accuracy

of GSMN and GSIMN is no longer 1 because testing for conditional independence in these

experiments was conducted using statistical tests on data. For small data sets, these statistical

tests may produce incorrect outcomes, and thus the recovered network may differ from the true
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Figure 3.4 Faithfulness of sampled data sets. The figure shows plots of

̂accuracy
data
true for the data sets used in our experiments, i.e., sam-

pled from randomly generated MNs with domain sizes n = 16

(left) and 20 (right) and connectivities τ = 1, 2, 4, 8 (shown as

histogram bars).

one. We thus compare the estimated accuracy of the networks output by all three algorithms.

This accuracy was calculated by a procedure similar to that used in the exact case. That is,

we sampled randomly a set T of 2,000 triplets (A, B,Z) evenly distributed among all possible

conditioning set sizes m ∈ {0, . . . , n−2}. The result (true or false) of performing a conditional

independence test for each triplet t on the network output by the algorithms, denoted IALG(t),

ALG ∈ {PFMN, GSMN, GSIMN}, was compared to the outcome of the test on the true model.

This time, however, instead of querying for independence directly in the true network using

vertex separation, we queried for independence by performing statistical tests on the data set

containing all possible data points |d|. In the data sets used in our experiments, this value is

|d| = 100, 000. If we denote by Idata(t) the result of performing a statistical independence test

on the complete data set, the accuracy of algorithm ALG is as follows:

̂accuracy
data
ALG =

1

|T |

∣∣∣∣
{

t ∈ T | IALG(t) = Idata(t)
}∣∣∣∣. (3.13)

This modification (using the independencies in the complete data set as the ground truth)

attempts to account for deficiencies of the sampling algorithm which produced unfaithful data

sets, that is, data sets whose conditional independences does not match the underlying model

(i.e., the model used to sampled the data). To assess the amount by which the data sets differ

from the true model we measured the accuracy of the data against the true model using a set
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T of 2, 000 randomly generated triplets, i.e.,

̂accuracy
data
true =

1

|T |

∣∣∣∣
{

t ∈ T | Itrue(t) = Idata(t)
}∣∣∣∣.

Figure 3.4 shows plots of ̂accuracy
data
true for subsets of several data sets with increasing

number of data points |d|. The data sets considered are those used in the experiments of this

section, i.e., data sets sampled from randomly generated MNs with domain sizes n = 16 (left)

and 20 (right) and connectivities τ = 1, 2, 4, 8 (shown as histogram bars). The figure shows

that even though the accuracy of the data sets increases with the number of data points |d| for

all domains sizes and connectivities, it barely surpasses 80% in most cases. In the worst case,

n = 20, τ = 8, the accuracy for |d| = 100, 000 is as low as 65%. This confirms that the data

sets used in our experiments are not faithful, and justifies the use of the data sets themselves

as ground truth (as opposed to using the true network.)

Figure 3.5 shows the weighted number of tests of PFMN vs. GSMN for different domain

sizes n = 16 (left column) and n = 20 (right column), a number of connectivities (τ = 1, 2, 4,

and 8), and a fixed number of particles N = 250. Each of the eight plots shows the absolute

value of the weighted number of tests as histogram bars, and their differences as line-curves

(with a positive value corresponding to an improvement of PFMN with respect to GSMN) for

data sets with increasing number of data points |d|. The x-axis is plotted using a log-scale.

Again, up to ten true networks were generated randomly for each pair (n, τ), and the figure

shows the mean values of the weighted cost. In all cases with the exception of τ = 8, PFMN

demonstrate a considerable reduction in the weighted number of tests, reaching savings of up

to 95% for n = 20, τ = 1, |d| = 500. These results improve slightly over those of the exact

case, which also showed improvements (of up to 85%) in all cases but τ = 4 and τ = 8.

The estimated accuracies of PFMN vs. GSMN (i.e., ̂accuracy
data
PFMN and ̂accuracy

data
GSMN,

respectively) are shown in Figure 3.6 for the same domain sizes n = 16, 20 (columns) and

connectivity parameters τ = 1, 2, 4, 8 (rows). In all eight plots, the mean value over up to ten

runs of the absolute accuracy are shown in the plots as histogram bars, and their difference as

a line-curve (with a positive value corresponding to an improvement of PFMN with respect to

GSMN). Again, the x-axis is plotted using a log-scale. The results in this figure are ambiguous,
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Figure 3.5 Comparisons of the weighted number of tests of PFMN vs.

GSMN for sampled data sets with increasing number of data

points |d|. The x-axis is plotted in log-scale. The figure shows

eight plots for different domain sizes n = 16 (left column) and

n = 20 (right column), a number of connectivities (τ = 1, 2, 4,

and 8), and a fix number of particles N = 250.

showing considerable improvements of PFMN over GSMN for τ = 1, 2 and 8 in both domain

sizes n = 16 and 20 and small data set sizes |d|, with improvements of up to 40% for τ = 1

and |d| = 50, and showing a decline in accuracy of PFMN with respect to GSMN for τ = 4

and both domain sizes with difference of up to 20% for |d| = 50.

We also compared PFMN against GSIMN for N = 250, using the same networks and their
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Figure 3.6 Comparisons of the accuracies of PFMN vs. GSMN for sampled

data sets with increasing number of data points |d|. The x-axis

is plotted in log-scale. The figure shows eight plots for different

domain sizes n = 16 (left column) and n = 20 (right column), a

number of connectivities (τ = 1, 2, 4, and 8), and a fixed number

of particles N = 250.

corresponding sampled data of domain sizes n = 16, 20 and connectivities τ = 1, 2, 4, 8 used

for the comparison against GSMN. Figure 3.7 shows the weighted number of tests of PFMN

vs. GSIMN with results for n = 16 and n = 20 (columns) and connectivities τ = 1, 2, 4, and 8

(rows). Once again, the figure shows the mean values over the same group of random networks

generated over each pair (n, τ). Qualitatively the results are similar to the comparison against
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Figure 3.7 Comparisons of the weighted number of tests of PFMN vs.

GSIMN for sampled data sets with increasing number of data

points |d|. The x-axis is plotted in log-scale. The figure shows

eight plots for different domain sizes n = 16 (left column) and

n = 20 (right column), a number of connectivities (τ = 1, 2, 4,

and 8), and a fixed number of particles N = 250.

GSMN but this time with smaller difference between the two weighted costs. This is expected

because —as showed in the previous chapter— GSIMN outperforms GSMN in the weighted

number of tests required. In all cases, with the exception of τ = 8, PFMN demonstrates a

considerable reduction in the weighted number of tests, reaching savings of up to 90% for

n = 20, τ = 2, |d| = 500. These results improve slightly over those of the exact case, which
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Figure 3.8 Comparisons of the accuracies of PFMN vs. GSIMN for sam-

pled data sets with increasing number of data points |d|. The

x-axis is plotted in log-scale. The figure shows eight plots for

different domain sizes n = 16 (left column) and n = 20 (right

column), a number of connectivities (τ = 1, 2, 4, and 8), and a

fixed number of particles N = 250.

also show improvements in all cases but τ = 4 and τ = 8.

The estimated accuracies of PFMN vs. GSIMN (i.e., ̂accuracy
data
PFMN and ̂accuracy

data
GSIMN,

respectively) are shown in Figure 3.8 for the same domain sizes n = 16, 20 (columns) and

connectivity parameters τ = 1, 2, 4, 8 (rows). The plots show the absolute values of the accuracy

as histogram bars, and their difference as a line-curve (with a positive value corresponding to
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an improvement of PFMN with respect to GSIMN). Once again the plots show the mean value

over up to ten runs, and the x-axis is plotted using a log-scale. The results in this figure show

the accuracy of PFMN is comparable to that of GSIMN in all but τ = 4, with a difference in

accuracy of up to 20% for small number of data points (|d| ≤ 500) but a recovery to a less

than 10% for large number of data points.
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Figure 3.9 Performance comparison of PFMN vs. GSMN on real-world

data sets. The line curve shows the ratio of weighted cost of

PFMN vs. GSMN and the histogram bars show the difference

between accuracy of PFMN and GSMN on real-world data sets.

The numbers on the x-axis correspond to data set indices in

Table 3.1.

3.4.2 Real-World Data Experiments

We also conducted experiments on a substantial number of data sets obtained from the UCI

ML and KDD archives (D.J. Newman and Merz, 1998a,b). As above, we compare the weighted

cost and accuracy of PFMN vs. GSMN and GSIMN. While known-model experiments have the

advantage of allowing a more controlled and systematic study of their performance, experiments

on real-world data are necessary for a more realistic assessment of their performance. Real data

sets are more challenging because their underlying probability distribution may not be faithful
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Figure 3.10 Performance comparison of PFMN vs. GSIMN on real-world

data sets. The line curve shows the ratio of weighted cost of

PFMN vs. GSIMN and the histogram bars show the difference

between accuracy of PFMN and GSIMN on real-world data

sets. The numbers on the x-axis correspond to data set indices

in Table 3.2.

to any Markov network, and its structure may be non-random (e.g., a possibly irregular lattice

in many cases of spatial data, or small-worlds networks in many cases of social networks).

Figure. 3.9 shows the ratio of the weighted cost of PFMN vs. GSMN (with a number smaller

than 1 shows improvement of PFMN vs. GSMN) and the difference in the accuracies of PFMN

and GSMN (with a positive histogram bar shows an improvement of PFMN vs. GSMN). In

these experiments, PFMN used N = 250. The numbers in the x-axis are indices to the data

sets shown in Table 3.1. In all 17 data sets PFMN required lower weighted cost than GSMN,

reaching ratios as low as 0.02 (i.e., a 98% reduction). Moreover, for 12 out 17 data sets PFMN

achieves this reduction in cost with better or no reduction in accuracy compared to GSMN,

the rest exhibit only a modest reduction of less than 8.3% (the largest difference being for the

dermatology data set).

Figure 3.10 shows the ratio of the weighted cost of PFMN vs. GSIMN (with a number

smaller than 1 showing an improvement of PFMN vs. GSIMN) and the difference in the
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Table 3.1 Comparison of weighted number of tests and accuracy of PFMN

vs. GSMN. for several real-world data sets. For each evaluation

measure, the best performance between PFMN and GSMN is

indicated in bold. The table also reports n, the number of vari-

ables in the domain, and N , the number of data points in each

data set.

Data set Weighted #(tests) Accuracy
# name n N PFMN GSMN PFMN GSMN

1 haberman 5 306 16 54 0.730 0.743
2 hayes-roth 6 132 64 116 0.794 0.794
3 balance-scale 5 625 23 64 0.770 0.784
4 monks-1 7 556 34 96 0.899 0.899
5 car 7 1728 32 202 0.733 0.581
6 baloons 5 20 29 63 0.946 0.946
7 crx 16 653 337 1344 0.723 0.602
8 nursery 9 12960 58 394 0.723 0.608
9 hepatitis 20 80 127 1588 0.797 0.577
10 cmc 10 1473 114 450 0.689 0.646
11 tic-tac-toe 10 958 65 399 0.656 0.479
12 flag 29 194 365 3979 0.461 0.343
13 bridges 12 70 282 538 0.600 0.570
15 alarm 37 20001 258 11906 0.562 0.430
16 imports-85 25 193 465 2877 0.364 0.423
17 dermatology 35 358 753 7651 0.312 0.395

Table 3.2 Comparison of weighted number of tests and accuracy of PFMN

vs. GSIMN. for several real-world datasets. For each evaluation

measure, the best performance between PFMN and GSMN is

indicated in bold. The table also reports n, the number of vari-

ables in the domain, and N , the number of data points in each

data set.

Data set Weighted #(tests) Accuracy
# name n N PFMN GSIMN PFMN GSIMN

1 haberman 5 306 16 20 0.730 0.730
2 hayes-roth 6 132 64 57 0.794 0.794
3 balance-scale 5 625 23 40 0.770 0.649
4 monks-1 7 556 34 42 0.899 0.899
5 car 7 1728 32 84 0.733 0.586
6 baloons 5 20 29 26 0.946 0.946
7 crx 16 653 337 858 0.723 0.635
8 nursery 9 12960 58 149 0.723 0.534
9 hepatitis 20 80 127 714 0.797 0.731
10 cmc 10 1473 114 286 0.689 0.552
11 tic-tac-toe 10 958 65 187 0.656 0.521
12 flag 29 194 365 2853 0.461 0.383
13 bridges 12 70 282 366 0.600 0.622
15 alarm 37 20001 258 3482 0.562 0.539
16 imports-85 25 193 465 2777 0.364 0.434
17 dermatology 35 358 753 4512 0.312 0.383

accuracies of PFMN and GSIMN (again with a positive histogram bar showing an improvement

of PFMN vs. GSIMN). As in the experiments for GSMN, PFMN used N = 250. The numbers

in the x-axis are indices to the data sets shown in Table 3.2. In 15 out of 17 data sets PFMN
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required lower weighted cost than GSIMN, reaching ratios as low as 0.08 (i.e., a 92% reduction).

As in the GSMN case, in most cases (14 out of 17) PFMN achieves this reduction in cost with

better or no reduction in accuracy compared to GSIMN. The remaining cases exhibit only a

modest reduction of less than 7% (the largest difference being for the imports-84 data set).

3.5 Summary

In this chapter we presented PFMN, an independence-based algorithm for learning the

structure of a Markov network from data. We presented an analysis of the domain of structures

and independences and a number of interesting relations using an explicit generative model. We

also showed experimentally that, compared to existing independence-based algorithms, PFMN

executes fewer tests in domain with sparse networks with little or no reduction in accuracy.

This helps in domains where data are scarce and tests uncertain or data are abundant and/or

distributed over a potentially slow network, making the execution of tests expensive.
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CHAPTER 4. Argumentative Independence Tests

4.1 Introduction and Motivation

In this chapter we present a framework that address one of the most important problems of

the independence-based approach: the problem of the unreliability of statistical independence

tests on finite data sets, especially small ones.

It is well-known that independence-based algorithms have several shortcomings. A major

one has to do with the effect that unreliable independence information has on their output. In

general such independence information comes from two sources: (a) a domain expert that can

provide his or her opinion on the validity of certain conditional independences among some

of the variables, usually with a degree of confidence attached to them, and/or (b) statistical

tests of independence, conducted on data gathered from the domain. As expert information is

often costly and difficult to obtain, the latter is the most commonly used option in practice. A

problem that occurs frequently however is that the data set available may be small. This may

happen for various reasons: lack of subjects to observe (e.g., in medical domains), expensive

data-gathering process, privacy concerns and others. Unfortunately, the reliability of statistical

tests significantly diminishes on small data sets. For example, Cochran (1954) recommends that

Pearson’s χ2 test be deemed unreliable if more than 20% of the cells of the test’s contingency

table have an expected count of less than 5 data points. Unreliable tests, besides producing

errors in the resulting model structure, may also produce cascading errors due the way that

independence-based algorithms work: their operation, including which test to evaluate next,

typically depends on the outcomes of previous ones. Therefore, an error in a previous test

may have large (negative) consequences in the resulting structure, a property that is called

algorithm instability in Spirtes et al. (2000).
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In this chapter we introduce a framework for increasing reliability of independence tests

for small data sets and, as a result, the reliability of independence-based algorithms when

they use them to discovery the structure of graphical models (both directed and undirected).

The framework introduces a general-purpose independence test, the argumentative inde-

pendence test or AIT, that produces more accurate conditional independence decisions that

its statistical counterpart by “correcting” their outcome. The correction is based on the infor-

mation of other independencies that hold in the domain and the relations that holds between

them as dictated by Pearl’s independence axioms.

We model this setting as a propositional knowledge base whose contents are conditional

independences that are potentially inconsistent. Our main insight is to recognize that the

outcomes of independence tests are not themselves independent but are constrained by the

outcomes of other tests through Pearl’s well-known properties of the conditional independence

relation (Pearl, 1988). Therefore, such constraints can be sometimes used to correct certain

inconsistent test outcomes, choosing instead the outcome that can be inferred by other tests

that are not involved in contradictions. We illustrate this by an example.

Example 4.1. Consider an independence-based knowledge base that contains the following

propositions, obtained through statistical tests on data.

(0⊥⊥ 1 | {2, 3}) (4.1)

(0⊥⊥ 4 | {2, 3}) (4.2)

(06⊥⊥{1, 4} | {2, 3}) (4.3)

where (X⊥⊥Y | Z) denotes conditional independence of the set of variables X with Y con-

ditional on set Z, and (X 6⊥⊥Y | Z) denotes conditional dependence. Suppose that (4.3) is in

fact wrong. Such an error can be avoided if there exists some constraint involving these inde-

pendence propositions. For example, suppose that we also know that the following rule holds

in the domain (this is an instance of the Composition axiom, one of Pearl’s directed axioms

introduced in Eqs. (4.6)).

(0⊥⊥ 1 | {2, 3}) ∧ (0⊥⊥ 4 | {2, 3}) =⇒ (0⊥⊥{1, 4} | {2, 3}). (4.4)



82

(Symmetry) (X⊥⊥Y | Z) ⇐⇒ (Y⊥⊥X | Z)
(Decomposition) (X⊥⊥Y ∪ W | Z) =⇒ (X⊥⊥Y | Z) ∧ (X⊥⊥W | Z)

(Weak Union) (X⊥⊥Y ∪ W | Z) =⇒ (X⊥⊥Y | Z ∪ W) (4.5)

(Contraction) (X⊥⊥Y | Z) ∧ (X⊥⊥W | Z ∪ Y) =⇒ (X⊥⊥Y ∪ W | Z)
(Intersection) (X⊥⊥Y | Z ∪ W) ∧ (X⊥⊥W | Z ∪ Y) =⇒ (X⊥⊥Y ∪ W | Z)

Rule (4.4) and dependence proposition (4.3) contradict each other, resulting in an inconsistent

knowledge base. Therefore proposition (4.3) can no longer be accepted. The incorrect inde-

pendence of proposition (4.3) could be rejected (and the error corrected) if it was possible to

resolve the inconsistency in favor of implication (4.4). The framework presented in the rest of

this chapter provides a principled approach for resolving such inconsistencies.

The situation described in the previous example, while simple, demonstrates the general

idea that we will use in the rest of the chapter: the set of independences and dependences

used in an independence-based discovery algorithm form a potentially inconsistent knowledge

base, and making use of general rules that we know hold in the domain helps us correct

certain outcomes of statistical tests from other ones (frequently more than one). In this way

we can improve the reliability of independence-based discovery algorithms that use them to

derive graphical models. To accomplish this we will use the framework of argumentation,

which provides a sound and elegant way of resolving inconsistencies in such knowledge bases,

including ones that contain independences.

The rest of the chapter is organized as follows. The next section introduces our notation

and definitions. Section 4.3 presents the argumentation framework and its extension with

preferences, and describes our approach for applying it to represent and reason in potentially

inconsistent knowledge bases that contain independence information. We present our experi-

mental evaluation in Section 4.7, and conclude with a summary of our approach in Section 4.8.

4.2 Notation and Preliminaries

Bayesian and Markov networks (BN and MN) are directed and undirected graphical mod-

els (respectively) which represents the joint probability distribution over V. Each node in the

graph represents one of the random variables in the domain. The structure of the network
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(Symmetry) (X⊥⊥Y | Z) ⇐⇒ (Y⊥⊥X | Z)
(Decomposition) (X⊥⊥Y ∪ W | Z) =⇒ (X⊥⊥Y | Z) ∧ (X⊥⊥W | Z)

(Composition) (X⊥⊥Y ∪ W | Z) ⇐= (X⊥⊥Y | Z) ∧ (X⊥⊥W | Z)
(Intersection) (X⊥⊥Y | Z ∪ W) ∧ (X⊥⊥W | Z ∪ Y) =⇒ (X⊥⊥Y ∪ W | Z)
(Weak Union) (X⊥⊥Y ∪ W | Z) =⇒ (X⊥⊥Y | Z ∪ W)

(4.6)(Contraction) (X⊥⊥Y | Z) ∧ (X⊥⊥W | Z ∪ Y) =⇒ (X⊥⊥Y ∪ W | Z)
(Weak Transitivity) (X⊥⊥Y | Z) ∧ (X⊥⊥Y | Z ∪ γ) =⇒ (X⊥⊥ γ | Z) ∨ (γ⊥⊥Y | Z)

(Chordality) (α⊥⊥β | γ ∪ δ) ∧ (γ⊥⊥ δ | α ∪ β) =⇒ (α⊥⊥β | γ) ∨ (α⊥⊥β | δ)

(Symmetry) (X⊥⊥Y | Z) ⇐⇒ (Y⊥⊥X | Z)
(Decomposition) (X⊥⊥Y ∪ W | Z) =⇒ (X⊥⊥Y | Z) ∧ (X⊥⊥W | Z)

(Intersection) (X⊥⊥Y | Z ∪ W) ∧ (X⊥⊥W | Z ∪ Y) =⇒ (X⊥⊥Y ∪ W | Z) (4.7)

(Strong Union) (X⊥⊥Y | Z) =⇒ (X⊥⊥Y | Z ∪ W)
(Transitivity) (X⊥⊥Y | Z) =⇒ (X⊥⊥ γ | Z) ∨ (γ⊥⊥Y | Z)

represents a set of conditional independences on the domain variables. Given the structure

of a network, the set of independences implied by it can be identified by a process called

d-separation for BNs, and vertex-separation for MNs.

The structure of BNs and MNs can be discovered from data using independence-based

algorithms, which operate by conducting a series of conditional independence queries. In

practice conditional independence information is implemented approximately by a statistical

test evaluated on the data set (for example, this can be Pearson’s conditional independence χ2

(chi-square) test (Agresti, 2002), Wilk’s G2 test, a mutual information test etc.). In this chapter

we used Wilk’s G2 test (Agresti, 2002). To determine conditional independence between two

variables X and Y given a set Z from data, the statistical test G2 (and any other independence

test based on hypothesis testing, e.g., the χ2 test) returns a p-value, which is the probability

of error given the data in assuming that the two variables are dependent when in fact they are

not. If the p-value of a test is p(X, Y | Z), the statistical test concludes independence if and

only if 1− p(X, Y | Z) is smaller than or equal to a confidence threshold α i.e.,

(X⊥⊥Y | Z) ⇐⇒ p(X, Y | Z) ≥ 1− α. (4.8)

Common values for α are 0.95, 0.99, and 0.90.

The conditional independences and dependences of a domain are connected through the

set of Pearl axioms of Eqs. (1.6), (1.8), and (1.7) presented in Chapter 1. For convenience, we
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reproduce them here in Eqs. (4.5), (4.6), and (4.7), respectively. The general rules of Eqs. (4.5)

apply for every probability distribution over V. For domains for which there exists a faithful

Bayesian network the set of directed axioms of Eqs. (4.6) hold. If instead a Markov network

structure exists that is faithful to the domain, the undirected axioms of Eqs. (4.7) hold.

In the next section we describe the argumentation framework in general, followed by its ap-

plication to our problem of answering independence queries from knowledge bases that contain

sets of potentially inconsistent independence propositions.

4.3 The Argumentation Framework

As we mentioned previously, we model the framework of learning a causal model through

independence queries as a set of rules (Eqs. (4.5) or (4.6)) and a knowledge base (KB) that

contains independence propositions that may be inconsistent.

There exist two major approaches for reasoning with inconsistent knowledge that corre-

spond to two different attitudes: One is to resolve the inconsistencies by removing a subset

of propositions such that the resulting KB becomes consistent; this is called belief revision in

the literature (Gärdenforst, 1992; Gärdenforst and Rott, 1995; Shapiro, 1998; Martins, 1992).

A known shortcoming (Shapiro, 1998) of belief revision stems from the fact that it removes

propositions, which, besides discarding potentially valuable information, has the same poten-

tial problem as the problem that we are trying to solve: an erroneous modification of the

KB may have unintended negative consequences if later more propositions are inserted in the

KB. A second approach to inconsistent KBs is to allow inconsistencies but to use rules that

may be possibly contained in it to deduce which truth value of a proposition query is “pre-

ferred” in some way. One instance of this approach is argumentation (Dung, 1995; Loui, 1987;

Prakken, 1997; Prakken and Vreeswijk, 2002), a sound approach that allows inconsistencies

but uses a proof procedure that is able to deduce (if possible) that one of the truth values

of certain propositions is preferred over its negation; this may happen because the latter is

contradicted by other rules and/or propositions in the KB (a more precise definition is given

below). Argumentation is a reasoning model that belongs to the broader class of defeasi-



85

ble logics (Pollock, 1992; Prakken, 1997). Our approach uses the argumentation framework

of Amgoud and Cayrol (2002) that considers preferences over arguments, extending Dung’s

more fundamental framework (Dung, 1995). Preference relations give an extra level of speci-

ficity for comparing arguments, allowing a more refined form of selection between conflicting

propositions. Preference-based argumentation is presented in more detail in the Section 4.3.2.

We proceed now to describe the argumentation framework.

Definition 4.1. An argumentation framework is a pair 〈A,R〉, where A is a set of arguments

and R is a binary relation representing a defeasibility relationship between arguments, i.e.,

R ⊆ A × A. (a, b) ∈ R or equivalently “a R b” means that argument a defeats the argument

b. We also say that a and a are in conflict.

An example of the defeat relation R is logical defeat, which occurs when an argument

contradicts another logically.

The elements of the argumentation framework are not propositions but arguments. Given

an inconsistent knowledge base K = 〈Σ, Ψ〉 with a set of propositions Σ and a set of inference

rules Ψ, arguments are defined formally as follows.

Definition 4.2. An argument over knowledge base 〈Σ, Ψ〉 is a pair (H, h) where H ⊆ Σ such

that:

• H is consistent,

• H ⊢Ψ h,

• H is minimal (with respect to set inclusion).

H is called the support and h the conclusion or head of the argument.

In the above definition ⊢Ψ stands for classical logical inference over the set of inference

rules Ψ. Intuitively an argument (H, h) can be thought as an “if-then” rule i.e., “if H then

h”. In inconsistent knowledge bases two arguments may contradict or defeat each other. The

defeat relation is defined through the rebut and undercut relations, defined below.
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Definition 4.3. Let (H1, h1), (H2, h2) be two arguments.

• (H1, h1) rebuts (H2, h2) iff h1 ≡ ¬h2.

• (H1, h1) undercuts (H2, h2) iff ∃h ∈ H2 such that h ≡ ¬h1.

(The symbol “≡” stands for logical equivalence.) In other words, (H1, h1) R (H2, h2) if

and only if (H1, h1) rebuts or undercuts (H2, h2).

The objective of argumentation is to decide on the acceptability of each argument. There

are three possibilities: an argument can be accepted, rejected, or neither. This partitions the

space of arguments A in three classes:

• The class AccR of acceptable arguments. Intuitively, these are the “good” arguments. In

the case of an inconsistent knowledge base, these will be inferred from the base.

• The class RejR of rejected arguments. These are the arguments defeated by acceptable

arguments. When applied to an inconsistent knowledge base, these will not be inferred

from it.

• The class AbR of arguments in abeyance. These arguments are neither acceptable nor

rejected.

The semantics of acceptability proposed by Dung dictates that an argument should be

accepted if it is not defeated, or if it is defended by acceptable arguments i.e., each of its

defeaters is itself defeated by an acceptable argument. This is formalized in the following

definitions.

Definition 4.4. Let 〈A,R〉 be an argumentation framework, and S ⊆ A. An argument a is

defended by S if and only if ∀b, if b R a then ∃c ∈ S such that c R b.

Dung characterizes the set of acceptable arguments by a monotonic function F , i.e., F(S) ⊆

F(S ∪ T ) for some S and T . Given a set of arguments S ⊆ A as input, F returns the set of

all arguments defended by S:

Definition 4.5. Let S ⊆ A. Then F(S) = {a ∈ A | a is defended by S}.
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1: S′ ←− S ∪ {a ∈ A | a is defended by S}

2: if S = S′ then

3: return S′

4: else

5: return F(A,R, S′)

Algorithm 11 Recursive computation of acceptable arguments:

AccR = F(A,R, S)

Slightly overloading our notation, we define F(∅) to contain the set of arguments that are

not defeated, i.e., defend themselves.

Definition 4.6. Let 〈A,R〉 be an argumentation framework, and let a ∈ A be some argument.

We say a defends itself if it is not defeated by any other argument, i.e. ∀b 6= a ∈ A, ¬(b R a).

Definition 4.7. F(∅) = {a ∈ A | a defends itself }.

Dung proved that the set of acceptable arguments is the least fix-point of F , i.e., the

smallest set S such that F(S) = S.

Theorem 4.8 (Dung (1995)). Let 〈A,R〉 be an argumentation framework. The set of accept-

able arguments AccR is the least fix-point of the function F .

Dung also showed that if the argumentation framework 〈A,R〉 is finitary i.e., for each

argument A there are finitely many arguments that defeat A, the least fix-point of function

F can be obtained by iterative application of F to the empty set. We can understand this

intuitively: From our semantics of acceptability it follows that all arguments in F(∅) are

accepted. Also, every argument in F(F(∅)) must be acceptable as well since each of its

arguments is defended by acceptable arguments. This reasoning can be applied recursively

until a fix-point is reached. The fix-point S is the set of arguments that cannot defend any

other argument not in S i.e., no other argument is accepted. This suggests a simple algorithm

for computing the set of acceptable arguments. Algorithm 11 shows a recursive procedure for

this, based on the above definition. The algorithm takes as input an argumentation framework

〈A,R〉 and the set S of arguments found acceptable so far i.e., S = ∅.

Let us illustrate these ideas with an example.
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Example 4.2. Let 〈A,R〉 be an argumentation framework defined by A = {a, b, c} and R =

{(a, b), (b, c)}. The only argument that is not defeated (i.e., defends itself) is a, and therefore

F(∅) = {a}. Argument b is defeated by the acceptable argument a, so b cannot be defended

and is therefore rejected i.e., b ∈ RejR. Argument c, though defeated by b, is defended by

(acceptable argument) a which defeats b, so c is acceptable. The set of acceptable arguments is

therefore AccR = {a, c} and the set of rejected arguments is RejR = {b}.

The bottom-up approach of Algorithm 11 has the disadvantage that it requires the com-

putation of all acceptable arguments to answer the acceptability status of a single one. In

practice, and in particular in the application of argumentation to independence tests, the en-

tire set of acceptable arguments is rarely needed. Below we present an alternative algorithm

for deciding the acceptability of an input argument that is adapted from the dialog tree algo-

rithm of Amgoud and Cayrol (2002). This algorithm is provably equivalent to algorithm (11)

(whenever it is given the same input it is guaranteed to produce the same output), but it is

considerably more efficient (as shown in Section 4.5.2). We sketch the algorithm here and com-

plete its presentation after the presentation of the preference-based argumentation framework

in Section 4.3.2.

The algorithm employs a top-down approach to answer whether an input argument a is

accepted or not. We consider the same acceptability semantics used for Algorithm 11 and

proposed by Dung: an argument is accepted if it is not defeated, or if it is defended by

acceptable arguments, and an argument is rejected if it is defeated by an accepted argument.

Putting these two together we see that an argument is accepted if it is not defeated, or if its

1: defeaters← set of arguments in A that defeat a according to R.

2: for d ∈ defeaters do

3: if top-down(A,R, a) = accepted then

4: return rejected

5: return accepted

Algorithm 12 Top-down computation of acceptable arguments:

top− down(A,R, a)
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defeaters are rejected. In summary:

[Acceptance] A node is accepted if it has no defeaters or if all its defeaters are rejected, i.e.

A(a) ⇐⇒ ∀b ∈ defeaters(a), R(b)

[Rejection] A node is rejected if at least one of its defeaters is accepted, i.e.

R(a) ⇐⇒ ∃b ∈ defeaters(a), A(b) (4.9)

[Abeyance] A node is in abeyance if its not accepted nor rejected, i.e.

Ab(a) ⇐⇒ ¬A(a) ∧ ¬R(a)

The logic of these equations can be easily implemented with a recursive algorithm. This is

shown in Algorithm 12. The algorithm loops over all defeaters of some input argument a and

responds rejected if any of its defeaters is accepted (line 4). If it reached the end of the loop

at line 5 it means none of its defeaters was accepted, and thus it accepts the input a. We can

represent the execution of the top-down algorithm graphically by a tree that contains a at the

root node, and all the defeaters of a node as its children. A leaf is reached when a node has

no defeaters. In that case the loop contains no iterations and line 5 is reached trivially.

Unfortunately, the top-down algorithm, as presented in Algorithm 12, will fail to terminate

when a node is in abeyance. This is clear from the following theorem (proved formally in

Appendix C):

Lemma 4.9. For every argument a it holds that

Ab(a) =⇒ ∃b ∈ attackers(a), Ab(b).

From this Lemma, if an argument is in abeyance, its set of defeaters contains an argument

in abeyance and thus it will recursively call the algorithm. The recursive call never ends, since

there is always another defeater in abeyance. While there are ways to overcome this difficulty

in the general case, for the special case of argumentation of independence propositions we will

prove that no argument can be in abeyance, and thus the algorithm always terminates. A

formal proof is presented below in Section 4.5, together with a time complexity analysis.
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We conclude the section by proving that the top-down algorithm is provably equivalent

to the bottom-up algorithm of Algorithm 11, i.e., whenever it is given the same input than

Algorithm 11, is guaranteed to produce the same output. The proof assumes no argument is

in abeyance. This assumption is satisfied for argumentation in independence knowledge bases

(c.f. Theorem 4.19, presented later). Formally,

Theorem 4.10. Let a be an argument in the argumentation framework 〈A,R〉, and let F be

the set of acceptable arguments output by Algorithm 11. Assuming a is not in abeyance,

top-down(A,R, a) = accepted ⇐⇒ a ∈ F (4.10)

top-down(A,R, a) = rejected ⇐⇒ a /∈ F (4.11)

Proof. According to Theorem 4.8, the fix point of function F returned by Algorithm 11 con-

tains the set of arguments considered acceptable by the acceptability semantics of Dung. On

the other hand, the top-down algorithm is a direct implementation of the same acceptabil-

ity semantics, and thus the double implication of Eq. (4.10) must follow. To prove the second

double-implication of Eq. (4.11) we can prove the equivalent expression with both sides negated,

i.e.,

top-down(A,R, a) 6= rejected ⇐⇒ a ∈ F .

Since a is not in abeyance, if the top-down algorithm does not return rejected it must return

accepted. The double implication is thus equivalent to Eq. (4.10), which was proved true.

4.3.1 Argumentation in Independence Knowledge Bases

We can apply the argumentation framework to our problem of answering queries from

knowledge bases that contain a number of potentially inconsistent independences and depen-

dencies and a set of rules that express relations among them.

Definition 4.11. An independence knowledge base (IKB) is a knowledge base 〈Σ, Ψ〉 such

that its proposition set Σ contains only independence propositions of the form (X⊥⊥Y | Z) or

(X 6⊥⊥Y | Z), for X, Y and Z three disjoint subsets of V, and its set of inference rules Ψ is
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either the general set of axioms shown in Eqs. (4.5), or the specific set of axioms of undirected

models shown Eqs. (4.7), or the specific set of axioms of directed models shown in Eqs. (4.6).

For IKBs, the set of arguments A is constructed in two steps. First, for each proposition

σ ∈ Σ (independence or dependence) we add to A the argument ({σ}, σ). This is a valid

argument according to Definition 4.2 since its support {σ} is (trivially) consistent, it (trivially)

implies the head σ, and it is minimal (the pair ({∅}, σ) is not a valid argument since ∅ is

equivalent to the proposition true which does not entail σ in general. Arguments of the form

({σ}, σ) are called propositional arguments since they correspond to single propositions. The

second step in the construction of the set of argumentsA concerns rules and proceeds as follows:

for each inference rule (Φ1 ∧ Φ2 . . . ∧ Φn =⇒ ϕ) ∈ Ψ, and each subset of Σ that matches

exactly the set of antecedents i.e., each subset {ϕ1, ϕ2 . . . , ϕn} of Σ such that Φ1 ≡ ϕ1, Φ2 ≡ ϕ2

. . . Φn ≡ ϕn, we add argument ({ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕn}, ϕ) to A.1

IKBs can be augmented with a set of preferences that allow one to take into account the

reliability of tests when deciding on the truth value of independence queries. This is described

in the next section.

4.3.2 Preference-based Argumentation Framework

Following Amgoud and Cayrol (2002), we now refine the argumentation framework of Dung

(1995) for cases where it is possible to define a preference order Π over arguments.

Definition 4.12. A preference-based argumentation framework (PAF) is a triplet 〈A,R, Π〉

where A is a set of arguments, R ⊆ A×A is a binary relation representing a defeat relationship

between pairs of arguments, and Π is a (partial or complete) ordering over A×A.

For the case of inconsistent knowledge bases, preference Π over arguments follows the

preference π over their support i.e., stronger support implies a stronger argument, which is

given as a partial or total order over sets of propositions. Formally:

1This is equivalent to propositionalizing the set of rules, some of which may be first-order (the rules of
Eqs. (4.5) and (4.6) are, as they are universally quantified over all sets of variables). As this may be expensive
(exponential in the number of propositions), in practice it may not be implemented in this way, instead matching
appropriate rules on the fly during the argumentation inference process.



92

Definition 4.13. Let K = 〈Σ, Ψ〉 be a knowledge base, π be a (partial or total) ordering on

subsets of Σ and (H, h), (H ′, h′) two arguments over K. Argument (H, h) is π-preferred to

(H ′, h′) (denoted (H, h)≫π (H ′, h′)) if and only if H is preferred to H ′ with respect to π.

In what follows we overload our notation by using π to denote either the ordering over

arguments or over their supports.

An important sub class of preference relations is the strict preference relation defined as

follows.

Definition 4.14. We say preference relation π over arguments is strict if the ordering of

arguments induced by it is a strict total ordering, i.e., for every pair a and b of arguments,

a≫π b ⇐⇒ ¬
(
b≫π a

)
. (4.12)

The importance of the property of strictness will become clear later when we argue the

correctness of the argumentative independence test (defined in Section 4.4).

We now introduce the concept of attack relation, a combination of the defeat and preference

relations.

Definition 4.15. Let 〈A,R, π〉 be a PAF, and a, b ∈ A be two arguments. We say b attacks

a if and only if b R a and ¬(a≫π b).

We can see that a preference-based argumentation framework is a special case of the more

general argumentation framework, having a more refined defeat relation. Therefore the same

conclusions apply, in particular Theorem 4.8, which allows us to compute the set of acceptable

arguments of a PAF using Alg. 11 or Alg. 12.

In Sections 4.3.3 and 4.4 below, we apply these ideas to construct a more reliable approxi-

mation to the independence-query oracle.

4.3.3 Preference-based Argumentation in Independence Knowledge Bases

In this section we describe how to apply the preference-based argumentation framework of

Section 4.3.2 to improve the reliability of conditional independence tests conducted on (possibly

small) data sets.
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A preference-based argumentation framework has three components. The first two, namely

A andR are identical to general argumentation frameworks. We now describe how we construct

the third component, namely the preference ordering π over subsets H of Σ, in IKBs. We define

it using the probability ν(H) that all propositions in H are correct, that is

H ≫π H ′ ⇐⇒ ν(H) > ν(H ′). (4.13)

Before we explain how we compute ν(H), let us prove that π, as defined by the above

equation, is strict (c.f. Definition 4.14).

Lemma 4.16. The preference relation for independence knowledge bases defined by Equation

4.13 is strict.

Proof.

H ≫π H ′ ⇐⇒ ν(H) > ν(H ′) by Eq. (4.13)

⇐⇒ ¬(ν(H ′) > ν(H))

⇐⇒ ¬(H ′ ≫π H ′) again by Eq. (4.13)

Note that the second step would not be true if we allow equality in Eq. (4.13), i.e., if our

definition for the preference states that H is preferred to H ′ when ν(H) = ν(H ′).

We compute the probability ν(H) that a set of propositions H is correct by assuming

independence among these propositions. Overloading notation and denoting by ν(h) the prob-

ability of an individual proposition h being correct, the probability of all elements in H being

correct under this assumption of independence is

ν(H) =
∏

h∈H

ν(h). (4.14)

In our case we have independence propositions. The probability that an independence

proposition is correct can be computed in different ways, depending on the particular choice of

independence oracle chosen. In this chapter we use Wilk’s G2 test. As discussed in Section 4.2,
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the p-value p(X, Y | Z) computed by this test is the probability of error in assuming that X

and Y are dependent when in fact they are not. Therefore, the probability of a test returning

dependence of being correct is

νD(X 6⊥⊥Y | Z) = 1− p(X, Y | Z) (4.15)

where the subscript D indicates that this expression is valid only for dependencies.

The probability of correctly reporting an independence is defined in terms of the β-value,

the probability of incorrectly reporting independence when in fact the variables are dependent:

νI(X⊥⊥Y | Z) = 1− β(X, Y | Z) (4.16)

where again the subscript I indicates that it is valid only for independences.

To the best of our knowledge, the general computation of the β-value is an open problem.

While computing the p-value involves evaluating the probability of a statistic under the dis-

tribution generated by the independence model, i.e., a model under which the variables are

independent, which for discrete domains is unique, computing β is difficult because there are

infinitely many possible models in which the variables are dependent. In statistical applica-

tions, the β value is commonly approximated by assuming one particular dependence model

if some prior knowledge is available. In the absence of such information however we take an

alternative approach of approximating the β-value from the p-value. We estimate the β-value

of a test on triplet (X, Y | Z) from the p-value assuming the following heuristic constraints on

β:

β(p(X, Y | Z)) =





0 if p(X, Y | Z) = 0

α + 1−α
2+|Z| if p(X, Y | Z) = 1

1− α if p(X, Y | Z) = 1− α.

The first constraint (for p(X, Y | Z) = 0) is justified by the intuition that when the p-

value of the test is close to 0, the test statistic is very far from its value under the model

that assumes independence, and thus we would give more preference to the “dependence”

decision. The situation for the second case (p(X, Y | Z) = 1) is reversed —the statistic is

very close from the expected one under independence, and therefore independence is preferred.
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The value of the second case is tempered by the number of variables in the conditioning set.

This reflects the practical consideration that, as the number 2 + |Z| of variables involved in

the test increases, given a fixed data set, the reliability of the test diminishes, going to 0 as

|Z| → ∞. The third case is related to fairness: In the absence of non-propositional arguments

(i.e., in the absence of inference rules in the knowledge-base), the independence decisions of

the argumentation framework should match those of the purely statistical tests. Otherwise,

changes in the outcome of tests may be due to simply bias in the independence decision that

favors dependence or independence i.e., it is equivalent to an arbitrary change to the threshold

of the statistical test, and the comparison of the two tests would not be a fair one.

Figure 4.1 The probability of correct independence νI(h) = 1 − β(p(h))

and the probability of correct dependence νD(h) = 1− p(h) as

a function of the p-value p(h) of test h.

The remaining values of β are approximated by linear interpolation among the above points.

The result is summarized in Fig. (4.1), which shows the probabilities of dependence νD (i.e.,

1− p) and νI (i.e., 1− β) versus p.

We now use the following example to illustrate how preference-based argumentation can

be used to resolve the inconsistencies of Example 4.1.
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Example 4.3. Example 4.1 considered an IKB with the following propositions

(0⊥⊥ 1 | {2, 3}) (4.17)

(0⊥⊥ 4 | {2, 3}) (4.18)

(06⊥⊥{1, 4} | {2, 3}) (4.19)

(0⊥⊥ 1 | {2, 3}) ∧ (0⊥⊥ 4 | {2, 3}) =⇒ (0⊥⊥{1, 4} | {2, 3}) (4.20)

Let us extend this IKB with the following preference values for its propositions and rules.

Pref [(0⊥⊥ 1 | {2, 3})] = 0.8

Pref [(0⊥⊥ 4 | {2, 3})] = 0.7

Pref [(06⊥⊥{1, 4} | {2, 3})] = 0.5

Following the IKB construction procedure described in the previous section, the above propo-

sitions correspond to the following arguments, respectively:

({
(0⊥⊥ 1 | {2, 3})

}
, (0⊥⊥ 1 | {2, 3})

)
(4.21)

({
(0⊥⊥ 4 | {2, 3})

}
, (0⊥⊥ 4 | {2, 3})

)
(4.22)

({
(06⊥⊥{1, 4} | {2, 3})

}
, (06⊥⊥{1, 4} | {2, 3})

)
(4.23)

and rule (4.20) corresponds to the following argument

({
(0⊥⊥ 1 | {2, 3}), (0⊥⊥ 4 | {2, 3})

}
, (0⊥⊥{1, 4} | {2, 3})

)
. (4.24)

The preference of each argument ({σ}, σ) is equal to the preference value of {σ}, according

to Definition 4.13, which, as it contains only a single proposition, is equal to the preference

of σ. Therefore,

Pref
[({

(0⊥⊥ 1 | {2, 3})
}

, (0⊥⊥ 1 | {2, 3})
)]

= 0.8

Pref
[({

(0⊥⊥ 4 | {2, 3})
}

, (0⊥⊥ 4 | {2, 3})
)]

= 0.7

Pref
[({

(06⊥⊥{1, 4} | {2, 3})
}

, (06⊥⊥{1, 4} | {2, 3})
)]

= 0.5.
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The preference of argument (4.24) equals the preference of the set of its antecedents, which,

according to Eq. (4.14), is equal to the product of their individual preferences i.e.,

Pref
[({

(0⊥⊥ 1 | {2, 3}), (0⊥⊥ 4 | {2, 3})
}

, (0⊥⊥ 1 | {2, 3})
)]

= 0.8× 0.7 = 0.56.

Now, even though proposition (4.19) and rule (4.20) contradict each other logically, i.e.,

their corresponding arguments (4.23) and (4.24) defeat each other, argument (4.24) defends

itself because its preference is 0.56 which is larger than 0.5, the preference of its defeater argu-

ment (4.23). Also, since no other argument defeats (4.24), it is acceptable, and (4.23), being

attacked by an acceptable argument, must be rejected. We therefore see that using preferences

the inconsistency of Example 4.1 has been resolved in favor of rule 4.20.

We now extend the above example to illustrate the defend relation, i.e., how an argument

can be defended by some other argument. The example also illustrates an alternative resolution

for the inconsistency of Example 4.1, this time in favor of the dependence proposition 4.19.

Example 4.4. Let us extend the IKB of Example 4.3 with two additional independence propo-

sitions and an additional rule.

The new propositions and their corresponding preferences are:

Pref [(0⊥⊥ 5 | {2, 3})] = 0.8

Pref [(06⊥⊥{1, 5} | {2, 3})] = 0.9.

and the new rule is:

(0⊥⊥ 5 | {2, 3}) ∧ (06⊥⊥{1, 5} | {2, 3}) =⇒ (06⊥⊥1 | {2, 3}).

This rule is an instance of the Composition axiom in contrapositive form.

The corresponding arguments are therefore:

Pref
[({

(0⊥⊥ 5 | {2, 3})
}

, (0⊥⊥ 5 | {2, 3})
)]

= 0.8

Pref
[({

(06⊥⊥{1, 5} | {2, 3})
}

, (06⊥⊥{1, 5} | {2, 3})
)]

= 0.9

corresponding to the two propositions, and

Pref
[({

(0⊥⊥ 5 | {2, 3}), (06⊥⊥{1, 5} | {2, 3})
}

, (06⊥⊥1 | {2, 3})
)]

= 0.8× 0.9 = 0.72 (4.25)
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corresponding to the rule.

As in Example 4.3, argument (4.23) is attacked by argument (4.24). Let us represent this

graphically using an arrow from argument a to argument b to denote that a attacks b, i.e.,

Argument 4.24 −→ Argument 4.23

If the IKB was as in Example 4.3, (4.24) would had been accepted and (4.23) would have

been rejected. However, the additional argument (4.25) defeats (undercuts) (4.24), by logically

contradicting its antecedent ({0}⊥⊥{1} | {2, 3}). Since (4.25) also attacks (4.24) i.e., its

preference 0.72 is larger than 0.56, the preference of (4.24), (4.25) defends all arguments that

are attacked by argument (4.24), in particular (4.23). Graphically,

Argument (4.25) −→ Argument (4.24) −→ Argument (4.23).

Note this is not sufficient for accepting (4.23) as it has not been proved that its defender

(4.25) is itself acceptable. We leave the proof of this as an exercise for the reader.

4.4 Argumentative Independence Tests (AITs)

The independence-based preference argumentation framework described in the previous

section provides a semantics for the acceptance of arguments consisting of independence propo-

sitions. However, what we need is a procedure for a test of independence that, given as input a

triplet σ = (X, Y | Z) responds whether X is independent or dependent of Y given Z. In other

words, we need a semantics for the acceptance of propositions, not arguments. Let us consider

the two propositions related to the input triplet σ = (X, Y | Z), proposition (σ = true), ab-

breviated σt, and proposition (σ = false), abbreviated σf, that correspond to independence

(X⊥⊥Y | Z) and dependence (X 6⊥⊥Y | Z) of σ, respectively. The basic idea for deciding on

the independence or dependence of input triplet σ is to define a semantics for the acceptance

or rejection of propositions σt and σf based on the acceptance or rejection of their respective

propositional arguments ({σt}, σt) and ({σf}, σf). Formally,

(X 6⊥⊥Y | Z) is accepted iff ({(X 6⊥⊥Y | Z)}, (X 6⊥⊥Y | Z)) is accepted, and

(X⊥⊥Y | Z) is accepted iff ({(X⊥⊥Y | Z)}, (X⊥⊥Y | Z)) is accepted. (4.26)
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Based on this semantics over propositions, we decide on the dependence or independence

of triplet σ as follows:

σt = (X⊥⊥Y | Z) is accepted =⇒ (X⊥⊥Y | Z)

σf = (X 6⊥⊥Y | Z) is accepted =⇒ (X 6⊥⊥Y | Z). (4.27)

For the above semantics to be well-defined, a triplet σ must be either independent or depen-

dent, not both, or neither. For that, exactly one of the antecedents of the above implications

must be true. Formally,

Theorem 4.17. For any input triplet σ = (X, Y | Z), the argumentative independence test

(AIT) defined by Eqs. (4.26) and (4.27) produces a non-ambiguous decision, i.e. it decides σ

evaluates to either independence or dependence, but nor both or neither.

For that to happen, one and only one of its corresponding propositions σt or σf must be

accepted. A necessary condition for this is given by the following theorem.

Theorem 4.18. Given a PAF 〈A,R, π〉 with a strict preference relation π, every propositional

argument ({σt}, σt) ∈ A and its negation ({σf}, σf) satisfy

({σt}, σt) is accepted iff ({σf}, σf) is rejected.

The above theorem is not sufficient because the propositions may still be in abeyance, but

this possibility is ruled out for strict preference relations by Theorem 4.19, presented later.

The formal proofs of these theorems are presented in Appendix C. We now illustrate the

use of AIT with an example.

Example 4.5. We consider an extension of Example 4.3 to illustrate the use of the AIT to

decide on the independence or dependence of input triplet ({0}, {1, 4} | {2, 3}). According to

Eq. (4.26) the decision depends on the status of the two propositional arguments:

({(0⊥⊥{1, 4} | {2, 3})}, (0⊥⊥{1, 4} | {2, 3})), and (4.28)

({(06⊥⊥{1, 4} | {2, 3})}, (06⊥⊥{1, 4} | {2, 3})). (4.29)
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Argument (4.29) is equivalent to argument (4.23) of Example 4.3, that was proved to be

rejected. According to Theorem 4.18, its negated propositional argument Eq. (4.28) must be

accepted, and we can conclude triplet ({0}, {1, 4} | {2, 3}) is independent, i.e., ({0}⊥⊥{1, 4} |

{2, 3}).

4.5 Top-down AIT algorithm

We now discuss the top-down algorithm introducted in Section 4.3 in more detail. We start

by simplifying the recursion of Eq. (4.9) that determines the state (accepted, rejected, or in

abeyance) of an argument a. We then explain the algorithm and we conclude by analyzing its

computability (i.e., the property that the recursion is finite), its time complexity, and present

some approximations to reduce its running time to polynomial.

To simplify the recursion Eq. (4.9) we consider the following theorem (proved in Appen-

dix C).

Theorem 4.19. Let 〈A,R, π〉 be a PAF with a strict preference relation π. Then no argument

a ∈ A is in abeyance.

This theorem reduces the number of states of each argument, and its corresponding node in

the tree, to only two, i.e., an argument can be either accepted or not accepted (rejected). We

will use the name of the argument a to denote the predicate “a is accepted” and its negation

¬a to denote the predicate “a is rejected.” With this notation, the above theorem, and the fact

that we have extended the semantics of acceptability from the defeat to the attack relation,

recursion Eq. (4.9) can be expressed as follows,

a ⇐⇒ ∀b ∈ attackers(a), ¬b

¬a ⇐⇒ ∃b ∈ attackers(a), b

or alternatively,

a ⇐⇒
∧

b∈attackers(a)

¬b

¬a ⇐⇒
∨

b∈attackers(b)

b. (4.30)
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Finally, we notice that the second formula is logically equivalent to the first (simply negate

both sides of the double implication to recover the first). Therefore, the boolean value of the

dialog tree for a can be computed by the simple expression

a ⇐⇒
∧

b∈attackers(a)

¬b.

To illustrate, consider an attacker b of a. If b is rejected, i.e., ¬b, the conjunction on the

right cannot be determined. Only when all attackers of a are known to be rejected, can the

value of a be determined to be a, i.e., accepted. Instead, if b is accepted, i.e., b, the state of

¬b is false and the conjunction can be immediately evaluated to false, i.e., a is rejected.

An iterative version of the top-down algorithm is shown in Algorithm 13. We assume that

the algorithm can access a global PAF 〈A,R, π〉, with arguments in A defined over a knowledge

base K = 〈Σ, Ψ〉.

Given as input a triplet t = (X, Y | Z), if the algorithm returns true (false) then we

conclude that t is independent (dependent). It starts by creating a root node u for the propo-

sitional argument U of proposition t = true (lines 1-6). According to Eqs. (4.26) and (4.27),

the algorithm then decides true if U is accepted. Otherwise, the algorithm returns false

(lines 22 and 23). This is because in that case, according to Theorem 4.18, the negation of

propositional argument U must be accepted.

The algorithm is an iterative version of a tree traversal algorithm. It maintains a queue of

the nodes that have not been expanded yet. A node is expanded when its children are added

to the tree. In the algorithm, this is done in the loop of lines 17 to 21, which access subroutine

getAttackers of Algorithm 15 to obtain all attackers of an argument. This subroutine finds

all attackers of the input argument a in a backward-chaining fashion, i.e., given an argument

a = (H, h), it searches for all rules in the knowledge base K whose consequent matches the

negation of some proposition in the support H, or the negation of its head h. Every node

maintains a three state variable STATE ∈ {nil, accepted, rejected} . The nil state denotes

that the value of the node is not yet known, and a node is initialized to this state when it is

added to the tree.
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Algorithm 13 independent(triplet t).

1: ftrue ← proposition (t = true)

2: Utrue ← ({ftrue}, ftrue)

3: utrue ← node for argument Utrue

4: utrue.parent← nil

5: u.STATE ← nil

6: fringe← [u] // Initialize with u (root).

7: /* Create global rejected node. */

8: ⊥← node with no argument and state rejected //⊥ represents a global rejected

node.

9: while fringe 6= ∅ do

10: u← pop(fringe)

11: attackers← getAttackers(u.argument)

12: if (attackers = ∅) then

13: u.STATE ← accepted

14: if sendMsg(⊥, u) = terminate then break

15: attackers← sort attackers in decreasing order of preference.

16: /* Enqueue attackers after decomposing them. */

17: for each A ∈ attackers do

18: a← node for argument A

19: a.parent← u

20: a.STATE ← nil

21: enqueue a in fringe

22: if (u.STATE = accepted) then return true

23: if (u.STATE = rejected) then return false

The algorithm proceeds until a node is found that has no attackers (line 12). Such a node

is accepted in line 13 (because it defends itself) and its STATE is propagated to the parent

using subroutine sendMsg (Algorithm 14). Every time a node receives a message from a child,

if the message is accepted, the node is rejected (line 3 of Algorithm 14), otherwise the node

is accepted if all its children has been evaluated to rejected (line 4 of Algorithm 14). The

subroutine sendMsg then proceeds recursively by forwarding a message to the parent whenever

a node has been evaluated (line 7). If the root is reached and evaluated, the message is sent

to its parent, which is nil. In this case, the subroutine returns the special keyword terminate

back to the caller, indicating that the root has been evaluated and thus the main algorithm

(Algorithm 13) can terminate. The caller can be either the subroutine sendMsg, in which case
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Algorithm 14 sendMsg(Node c, Node p).

1: /* Try to evaluate parent p given new info c.V ALUE */

2: if p 6= nil then

3: if c.STATE = accepted then p.STATE ← rejected

4: else if (∀ children q of p, q.STATE 6= nil) then p.STATE ← accepted

5: /* If p was successfully evaluated, try to evaluate its parent by sending message upward.

*/

6: if p.STATE 6= nil then

7: return sendMsg(p, p.parent)

8: else

9: return continue

10: else

11: return terminate /* Root node has been evaluated. */

1: attackers← ∅

2: /* Get all undercutters or rebutters of a. */

3: for all propositions ϕ ∈ H ∪ {h} do

4: /* Get all defeaters of proposition ϕ. */

5: for all rules (Φ1 ∧ Φ2 . . . ∧ Φn =⇒ ¬ϕ) ∈ Ψ do

6: /* Find all propositionalizations of the rule whose consequent matches ¬ϕ. */

7: for all subsets {ϕ1, ϕ2 . . . , ϕn} of Σ s.t. Φ1 ≡ ϕ1, Φ2 ≡ ϕ2 . . . Φn ≡ ϕn do

8: d← ({ϕ1 ∧ ϕ2 . . . ϕn},¬ϕ) /* Create defeater. */

9: /* Is the defeater an attacker? */

10: if ¬(a≫π d) then

11: attackers← attackers ∪ {d}

12: return attackers

Algorithm 15 Finds all attackers of input argument a in knowledge base

K = 〈Σ, Ψ〉: getAttackers(a = (H, h))

it pushes the returned message up the method-calling stack, or the top-down algorithm in line

14, in which case the “while” loop is terminated.

An important part of the algorithm is yet underspecified, namely the order in which the

attackers of a node are explored in the tree (i.e., the manner in which nodes are enqueued

in line 21). Possible orderings are depth-first, breadth-first, iterative deepening, as well as

informed searches such as best-first when a heuristic is available.

In our experiments we used iterative deepening because it has the benefits of both depth-
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first and breadth-first search, i.e., small memory requirements in the same order as depth-first

search (i.e., in the order of the maximum number of children a node can have) but also the

advantage of finding the shallowest solution like breadth-first search. We also used a heuristic

for enqueuing the children of a node. According to iterative deepening, the position in the queue

of the children of a node is specified relative to other nodes, but not relative to each other. We

therefore specified the relative order of the children according the value of preference function.

Children with higher preference are enqueued first (line 15 of the top-down algorithm), and

thus, according to iterative deepening, would be dequeued first.

4.5.1 Computability of the Top-Down Algorithm

We now prove that, under certain general conditions, the acceptability of an argument a

can always be determined by the top-down algorithm, i.e., the algorithm always terminates.

This is shown in the following theorem.

Theorem 4.20. Given an arbitrary triplet t = (X, Y | Z), and a PAF 〈A,R, π〉 with a strict

preference relation π, Algorithm 13 with input t over 〈A,R, π〉 terminates.

The proof consists on showing that the path from the root a to any leaf is always finite.

For that, let us first define the concept of an attack sequence.

Definition 4.21. An attack sequence is a sequence 〈a1, a2, . . . , an〉 of n arguments such that

for every i ∈ [2, n], ai attacks ai−1.

It is clear by the way we construct the tree, that any path from the root to a leaf is an

attack sequence. It suffices to show then that any such sequence is finite. This is done by the

following theorem.

Theorem 4.22. Let 〈A,R, π〉 be a PAF with a strict preference relation π and a finite set A

of arguments. Then any attack sequence is finite.

Intuitively, if the preference relation is strict then an element can attack its predecessor

in the sequence but not vice versa. Since the set of arguments A is finite, the only way for
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an attack sequence to be infinite is to contain a cycle. In that case, an argument would be

attacking its predecessor, which cannot happen in a PAF with a strict preference relation. We

present a formal proof in Appendix C.

We thus arrived to the important conclusion that, under the conditions of strict preference

function and finite argument set, the state of any argument is computable. In Section 4.3.3 we

showed that the preference function for independence knowledge bases is strict, and thus the

computability of the top-down algorithm is guaranteed.

4.5.2 Time Complexity of the Top-Down Algorithm

Since Algorithm 13 is essentially a tree traversal algorithm, its time complexity can be

obtained by standard techniques contained in Algorithms texts, e.g. Cormen et al. (2001), and

depends on the exploration procedure we choose. In our case we used iterative deepening. The

time complexity of an iterative deepening search algorithm is O(bd), where b is the branching

factor and d is the smallest depth at which the algorithm terminates. Therefore, the time is

exponential in d. Unfortunately, for the case of independence tests b may itself be exponential.

This is because the inference rules of Eqs. (4.5), (4.7), and (4.6) are universally quantified and

therefore their propositionalization (lines 7–11 of Algorithm 15), may result in an exponential

number of rules with the same consequent.

4.6 Approximate Top-Down Algorithm

In order to obtain a practical algorithm we propose an approximation of the top-down

algorithm. To address the exponential behavior of the search we set a cutoff depth d for

iterative deepening, and to address the exponential behavior of the branching factor b we

consider an alternative to Algorithm 15 that produces a polynomial number of defeaters (which

bounds the number of attackers) during the propositionalization (lines 7–11 of Algorithm

15). This propositionalization produces, for some given proposition ϕ, all rules {ϕ1 ∧ ϕ2 . . . ∧

ϕn =⇒ ¬ϕ} of Σ. Let Σϕ ⊆ Σ denote such a set of rules. If we let ϕ = (X,Y | Z)

and ϕi = (Xi,Yi | Zi), i ∈ [1, n], the approximation considers a subset Σ̂ϕ of Σϕ s.t. for all
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{ϕ1 ∧ ϕ2 . . . ∧ ϕn =⇒ ϕ} ∈ Σ̂ϕ, and for all i ∈ [1, n],

|X| − c < |Xi| < |X|+ c

|Y| − c < |Yi| < |Y|+ c

|Z| − c < |Zi| < |Z|+ c

where | · | denotes set cardinality, and c is some user-specified integer parameter that defines

the approximation. We call this algorithm the approximate top-down algorithm. In the

experiments shown in the next section we used c = 1 and d = 3.

4.7 Experimental Results

The main focus of the present chapter is to demonstrate that the argumentation approach

does indeed improve the accuracy of independence tests evaluated on small data sets. For that,

we conducted experiments on sampled and real-world data sets and compared the accuracy

(defined precisely later in the section) of the bottom-up, exact top-down, and approximate

top-down versions of the argumentative independence tests (denoted AITb, AITt, and ÂIT,

respectively), versus their statistical counterpart (denoted SIT), for varying reliability con-

ditions, obtained by conducting experiments on varying data set sizes. The accuracy was

estimated by performing a number of conditional independence tests on data, and comparing

the result of each of these (true or false) with the true value of the corresponding indepen-

dence, computed by querying the underlying model for the conditional independence value of

the same test. This approach is similar to estimating accuracy in a classification task over

unseen instances but with inputs here being triplets (X,Y | Z) and the class attribute be-

ing the value of the corresponding conditional independence test. Results for accuracy of the

bottom-up algorithm are presented in the following section, followed by the results for the

top-down algorithm in Section 4.7.3.

We also compared the running time of the three variations of the argumentative tests. We

conducted experiments to compare the running times of the bottom-up vs. the exact top-

down algorithms. The results of these experiments are discussed in detail in Section 4.7.2
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and demonstrate the great improvements in running time of the top-down algorithm compared

against the bottom-up approach. We also conducted experiments to compare the running time

of exact vs. approximate top-down algorithms. The results of these experiments are discussed

in Section 4.7.4 and also demonstrate improvements in running time of the approximate top-

down algorithm of almost an order of magnitude compared against the bottom-up approach.

4.7.1 Bottom-Up Algorithm Experiments

In this section we demonstrate that the argumentation approach, implemented using the

bottom-up algorithm of Algorithm 11, improves the accuracy of independence tests on small

data sets. For that, we generated the set of all propositional arguments possible i.e., arguments

of the form ({σ}, σ), by iterating over all possible triplets (X,Y | Z), and inserted them in the

knowledge base together with their preference, as described in Section 4.3.1. Similarly, for the

set of axioms that we used in each case i.e., either the general (Eqs. (4.5)) or the specific ones

(Eqs. (4.6)), we iterated over all possible matches of each rule, inserting the corresponding

instantiated rule in the knowledge base again together with its preference. The reason for

including all propositional and rule-based arguments in our IKB is to allow the argumentation

framework to consider all possible arguments in favor of or against an independence query.

The time complexity of the bottom-up algorithm is linear with the size |A| of the space of

arguments, but |A| itself grows super-exponentially with the domain size n. This prevented

us from exploring domain sizes larger than n = 8. While clearly the bottom-up algorithm is

impractical, its (improved) accuracy results demonstrates the utility of our approach. We later

present results for larger values of n obtained by using the top-down algorithm, which is much

more efficient.

In the next section we present results for data sampled from Bayesian networks, where the

underlying model is known and can be queried for conditional independence using d-separation.

Following this, we present results of real-wold data experiments where the underlying model is

unknown and thus the true values of the independences must be approximated; this is explained

in detail below.
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Figure 4.2 Comparison of statistical tests (SIT) vs. argumentative tests

on the general axioms (AITb-G) for domain size n = 6 and

τ = 3, 5 and for n = 8 and τ = 3, 7. The histograms show the

absolute value of the accuracy while the line curves shows their

difference i.e., a positive value corresponds to an improvement

in the accuracy of AITb-G over the accuracy of SIT.

4.7.1.1 Sampled Data Experiments

In this set of experiments we compare the accuracy of argumentative tests versus purely

statistical tests on several data sets sampled from a number of randomly generated Bayesian

networks. Sampled data experiments have the advantage of a more precise estimation of the

accuracy since the underlying model is known. We present experiments for two versions of the

argumentative test, one that uses Pearl’s general axioms of Eqs. (4.5), denoted AITb-G, and

another that uses Pearl’s directed axioms of Eqs. (4.6), denoted AITb-D.

The data was sampled from randomly generated Bayesian networks of different number of
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Figure 4.3 Comparison of statistical tests (SIT) vs. argumentative tests

on the causal axioms (AITb-D) for domain size n = 6, maxi-

mum degree τ = 3, 5 and domain size n = 8, maximum degree

τ = 3, 7. The histogram shows the absolute value of the accu-

racies and the line curve shows their difference i.e., a positive

value correspond to an improvement in the accuracy of AITb-D

over the accuracy of SIT.

nodes n and different maximum degrees per node τ (corresponding to different arc densities in

the resulting graphs) using BNGenerator (Ide and Cozman, 2002), a publicly available Java

package. For n = 6 we generated ten networks with τ = 3 and ten networks with τ = 5. For

n = 8 we generated ten networks for τ = 3 and another ten for τ = 7. For each data set D in

these four groups, we conducted experiments on subsets of D containing an increasing number

of data points. This was done in order to assess the performance of the independence tests on

varying conditions of reliability, as the reliability of a test typically decreases with decreasing

data set size.
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Figure 4.4 Comparison of the output of PC-Algorithm for SIT and

AITb-G for domain size n = 6, maximum degree τ = 3, 5 and

domain size n = 8, maximum degree τ = 3, 7. The histogram

shows the absolute value of the accuracies and the line curve

shows their difference i.e., a positive value correspond to an

improvement in the accuracy of AITb-G over the accuracy of

SIT.

For each experiment we report the estimated accuracy, calculated by comparing the result

of a number of conditional independence tests (SITs or AITs) on data with the true value of

independence, computed by querying the underlying model for the conditional independence

of the same test using d-separation. Since the number of possible tests is exponential, we

estimated the independence accuracy by sampling 2,000 triplets (X, Y,Z) randomly, evenly

distributed among all possible conditioning set sizes m ∈ {0, . . . , n−2} (i.e., 2000/(n−1) tests

for each m). Denoting by T this set of 2,000 triplets, by t ∈ T a triplet, by Itrue(t) the result

of a test performed on the underlying model, and by Idata-Y(t) the results of performing a test
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Figure 4.5 Comparison of the output of PC-Algorithm for SIT and

AITb-D for domain size n = 6, maximum degree τ = 3, 5 and

domain size n = 8, maximum degree τ = 3, 7. The histogram

shows the absolute value of the accuracies and the line curve

shows their difference i.e., a positive value correspond to an

improvement in the accuracy of AITb-D over the accuracy of

SIT.

of type Y on data, for Y equal to SIT, AITb-G or AITb-D, the estimated accuracy of test type

Y is defined as

̂accuracy
data
Y =

1

|T |

∣∣∣∣
{

t ∈ T | Idata-Y(t) = Itrue(t)
}∣∣∣∣. (4.31)

Figure 4.2 shows a comparison of the argumentative test AITb-G using the general axioms

with the corresponding SIT. The figure shows four plots for different values of n and τ of

the mean values (over runs for ten different networks) of ̂accuracy
data
SIT and ̂accuracy

data
AITb−G

(histograms), and the difference ( ̂accuracy
data
AITb−G − ̂accuracy

data
SIT ) (line graph) for different

data set sizes N . A positive value of the difference corresponds to an improvement of AITb-G
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over SIT. We can observe modest improvements over the entire range of data set sizes in all

four cases of up to 6% for n = 6, τ = 5 and N = 240.

In certain situations it may be the case that the experimenter knows that the underly-

ing distribution belongs to the class of Bayesian networks. In these situations it is appro-

priate to use the specific axioms of Eqs. (4.6) instead of the general axioms of Eqs. (4.5).

Figure 4.3 compares the argumentative test AITb-D that uses the directed axioms vs. sta-

tistical tests. The plots follow the same format as Figure 4.2, with histograms plotting the

mean values of ̂accuracy
data
SIT and ̂accuracy

data
AITb−D and the line graphs showing the difference

( ̂accuracy
data
AITb−D − ̂accuracy

data
SIT ). As in the case for the AIT using the general axioms, we

can observe improvements over the entire range of data set sizes in all four cases. In this case

however, the improvement is considerably larger, with sustained increases in the accuracy in

the order of 5% and above, and improvements of up to 17% for n = 8, τ = 7 and N = 600.

We also notice in both AITb-G and AITb-D that larger improvements tend to appear in more

connected domains i.e., for larger values of τ .

We also studied the effect that the improvement in the accuracy of argumentative tests

has on the learning of the structure of Bayesian networks. In the following experiments we

used the PC algorithm (Spirtes et al., 2000), an independence-based algorithm, to learn the

structure. We compared the true structure of the underlying model to the resulting structure

of the PC algorithm when it uses SITs as independence tests, denoted PC-SIT, and its output

when it uses argumentative independence tests, denoted PC-AITb-G and PC-AITb-D when

using general and directed axioms respectively. We evaluated the resulting networks by their

ability to accurately represent the true independences in the domain, calculated by comparing

the results (true or false) of a number of conditional tests conducted using d-separation,

with the results on the output networks (PC-SIT, PC-AITb-G or PC-AITb-D). Denoting by

T this set of 2,000 triplets, by t ∈ T a triplet, by Itrue(t) the result of a test performed on the

underlying model, and by IPC-Y(t) the result of performing a d-separation test on the output

network PC-Y with Y equal to SIT, AITb-G or AITb-D, the estimated accuracy of network
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PC-Y is defined as

̂accuracy
PC
Y =

1

|T |

∣∣∣∣
{

t ∈ T | IPC-Y(t) = Itrue(t)
}∣∣∣∣. (4.32)

The comparison of the accuracy of the PC algorithm using SITs vs. using argumentative

tests AITb-G or AITb-D is shown in Figures 4.4 and 4.5, respectively. The figures contain four

plots each for the different values of n and τ , and have the same format as in previous figures.

Once again, all four plots show improvements of the argumentation approach over the entire

range of data set sizes, with improvements of up to 8% for the general axioms (for n = 6, τ = 5

and N = 400), and up to 17% for the causal axioms (for n = 8, τ = 7 and N = 400 and 900).

4.7.1.2 Real-world Data Experiments

While the sampled data set studies of the previous section have the advantage of a more

controlled and systematic study of the performance of the algorithms, experiments on real-

world data are necessary for a more realistic assessment.

We conducted experiments on a number of real-world data sets obtained from the UCI ma-

chine learning repository (D.J. Newman and Merz, 1998a) and the Knowledge Discovery Data

repository (D.J. Newman and Merz, 1998b). For each data set D, we conducted experiments

on subsets d of D containing an increasing number of data points N . In this way we could

assess the performance of the independence tests (SITs or AITs) on varying conditions of reli-

ability, as the reliability of a test varies (typically increases) with the amount of data available.

To reduce variance, each experiment was repeated for ten data subsets d of equal size, obtained

by permuting the data points of D randomly and using the first N as the subset d.

Because for real-world data sets the underlying model is unknown, we can only be sure the

general axioms of Eqs. (4.5) apply. Therefore in the following experiments we only report the

accuracy of AITb-G, the bottom-up argumentative independence test defined over the general

axioms. The accuracy for this set of experiments is now defined as

̂accuracy
data
Y =

1

|T |

∣∣∣∣
{

t ∈ T | Idata-Y(t) = Itrue(t)
}∣∣∣∣ (4.33)
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where Y is equal to either SIT or AITb-G. Unfortunately, since the underlying model is not

known, it is also impossible to know the true value Itrue of any independence t. We therefore

approximate it by a statistical test on the entire data set, and limit the size N of the data set

subsets that we use up to a third of the size of the entire data set. This corresponds to the

hypothetical scenario that a much smaller data set is available to the researcher, allowing us

to evaluate the improvement of argumentation under these more challenging situations.

As mentioned in the beginning of the section, because of the exponential nature of the

bottom-up algorithm we had to limit the size of our domain. For real-world data sets we

limited our bottom-up algorithm experiments to 6 variables by selecting multiple random

subsets of 6 variables from each data set D, resulting in a number of projections of D of

size 6. We later report results over the complete data sets using the top-down argumentation

algorithm, which can be run over larger domains. As noted in the sampled data experiments

of the previous section, the amount of improvement in accuracy is greater for more connected

models, as measured by the maximum degree parameter τ used to create the underlying model.

For this reason we investigated analogous situations for real-world data sets as well. As for the

latter the underlying model is unknown, no connectivity parameter τ is available; instead we

used as measure of dependence the ratio of the triplets that are dependent (obtained using a

statistical independence test) in a collection of tests, and generated and evaluated a number

of data set projections of various different ratios.

Table 4.1 shows the results of our comparison between the argumentative test AITb-G and

statistical test SIT for real-world data sets. The best-performing method (SIT or AITb-G,

the latter shown abbreviated as AIT in the table) is shown in bold. As we can verify, the

argumentative test improves accuracy for most data set sizes with the exception of very small

data sets i.e., 10 data points. The same numbers are plotted in Figure 4.6. The figure contains

8 plots, one per data set D, each containing 5 curves for each of the variable projections of D.

The plots depict the average of the difference between the accuracy of AITb-G and that of

SIT, where as usual a positive value denotes an improvement of AITb-G over SIT. The figure

demonstrates a clear advantage of the argumentative approach, with all data sets reaching
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Figure 4.6 Accuracy improvements of AITb over SIT for a number of

6-column projections of several real-world data sets.

positive improvements in accuracy of up to 10% (with the exception of the alarm data set).

4.7.2 Top-down vs. Bottom-up Experiments

In Theorem 4.10 (Section 4.3) we proved that for every input argument, the bottom-up

and top-down algorithms are guaranteed to produce the same output. However, the top-down

algorithm is expected to be considerably more efficient. To prove this we conducted experiments

that compare the running time of the argumentative test that uses the bottom-up algorithm

AITb and the running time of the argumentative test that uses the top-down algorithm AITt
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Table 4.1 Accuracies (in percentage) of SIT and AITb-G (denoted AIT

in the table) for several 6-variable projections of real-world data

sets. For each data set projection, the table shows the ratio of

dependencies in the data set and the accuracy for number of

data points N = 40, 240, 600, 1200, 3500. The best performance

between SIT and AITb-G is indicated in bold. Blank entries

correspond to cases where the original data set was smaller than

the value of N in that column.

Data set N=40 N=240 N=600 N=1200 N=3500
Name total NDep-Ratio Variable set SIT AIT SIT AIT SIT AIT SIT AIT SIT AIT

0.498 (11 12 22 30 31 33) 59.4 61.2 73.376.7 81.1 83.5 85.9 87.3 89.2 89.9
0.358 (13 17 21 23 28 34) 64.7 64.7 74.074.7 77.7 78.1 81.5 83.8 91.5 93.6

alarm 20000 0.181 (3 6 14 29 31 33) 90.9 96.0 96.898.9 98.4 98.7 98.7 98.7 98.6 98.6
0.172 (5 18 21 28 29 31) 86.4 86.4 90.2 90.2 90.4 91.2 92.1 94.4 96.2 96.9
0.114 (2 11 15 18 28 32) 88.9 88.9 93.894.6 95.0 95.0 95.0 95.1 95.2 95.6
0.603 (1 2 3 4 5 7) 42.8 51.6 54.663.5 63.1 71.1 69.3 78.6 80.4 86.7
0.501 (0 1 3 4 5 9) 51.4 55.3 56.959.6 60.9 65.7 66.8 72.5 74.5 82.4

adult 32560 0.315 (0 1 2 4 8 9) 71.1 73.9 75.077.0 77.8 81.3 82.2 83.8
0.411 (0 1 3 4 6 8) 58.9 58.9 59.761.0 61.7 65.5 64.7 68.3 71.4 79.5
0.393 (2 5 6 7 8 9) 62.1 63.1 65.467.1 67.2 67.7 69.3 72.9 75.3 82.3
0.510 (1 4 5 6 7 8) 50.8 55.0 58.161.2 63.8 65.8 68.7 74.4 82.7 82.7
0.419 (1 2 4 5 7 8) 60.6 64.8 66.669.8 70.6 72.8 74.0 77.3 84.0 84.0

nursery 12959 0.362 (0 2 3 5 7 8) 66.4 70.5 71.072.1 73.7 76.2 76.3 77.9 85.6 85.6
0.317 (2 3 4 5 6 8) 68.3 68.3 68.3 68.3 69.3 71.0 72.4 77.8 83.5 83.5
0.000 (0 1 2 3 4 5) 100.0100.099.9 99.9100.0100.0100.0100.0100.0100.0
0.996 (1 8 14 32 33 42) 0.9 0.8 8.0 9.4 13.1 18.1 24.6 33.0 52.0 62.4
0.997 (3 15 22 24 37 42) 0.7 0.7 0.4 0.4 1.2 1.0 6.3 8.7 31.3 41.1

connect-4 65534 0.854 (11 16 18 19 22 39) 19.5 19.8 23.123.8 25.6 26.9 32.6 33.4 43.1 47.1
0.766 (12 19 22 36 40 41) 23.9 24.1 25.927.1 32.7 34.2 39.2 41.9 58.0 61.2
0.694 (4 6 29 37 40 42) 31.2 31.2 31.2 31.2 33.8 34.7 39.6 44.1 55.3 58.6
0.892 (0 5 8 9 10 12) 10.8 10.8 11.511.4 13.8 17.2 21.9 31.4
0.827 (0 3 6 8 9 16) 17.3 17.3 17.3 17.3 19.2 21.8 26.1 33.7 52.1 61.1

letter-rec 19999 0.774 (1 4 9 12 13 15) 22.6 22.6 23.726.3 26.9 33.1 32.2 42.2 54.1 62.6
0.734 (2 3 4 11 13 15) 26.6 26.6 28.6 28.6 31.6 31.6 37.8 37.8 57.6 57.6
0.749 (4 10 11 12 15 16) 25.1 25.1 25.0 25.0 26.8 26.8 33.3 33.3 100.0100.0
0.410 (0 1 3 4 5 6) 60.1 60.7 69.775.7
0.311 (0 1 2 3 5 6) 69.8 70.1 77.983.3

car 1727 0.279 (0 2 3 4 5 6) 73.3 73.8 80.786.8
0.251 (0 1 2 4 5 6) 75.2 75.6 80.483.5
0.211 (0 1 2 3 4 6) 79.1 79.2 83.486.8
0.429 (1 2 6 7 8 9) 58.3 58.6 68.978.6
0.308 (0 1 2 4 8 9) 70.1 70.5 76.682.0

cmc 1472 0.249 (0 2 3 4 6 9) 75.6 75.5 78.082.9
0.202 (1 2 3 4 5 8) 81.1 81.4 89.092.4
0.197 (0 2 4 5 6 7) 79.9 79.9 84.187.6
0.452 (0 2 3 5 6 7) 62.8 64.1 81.589.0
0.354 (1 2 5 6 8 9) 67.6 68.0 82.986.4

flare2 1065 0.257 (0 1 5 6 9 12) 79.4 81.9 89.292.0
0.192 (0 1 4 5 9 10) 83.4 85.289.188.6
0.185 (2 5 6 10 11 12) 82.4 82.9 86.688.4

when they are used to discover the structure of Bayesian and Markov networks. We consider

two versions of each test, one that uses the general axioms of Eq.(4.5), denoted AITi-G (i ∈

{t, b}), and one that uses the specific axioms of Eqs.(4.7) (applicable to Markov networks) and

(4.6) (applicable to Bayesian networks), denoted AITi-U and AITi-D respectively (i ∈ {t, b}).
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For Bayesian networks, we compare the running time taken by the PC algorithm to learn the

structure when it uses AITb-G (or AITb-D) vs. the time taken by the PC algorithm when it

uses AITt-G (or AITt-D). Similarly, for Markov networks we compare the running time taken

by the GSMN algorithm of Chapter 2 to learn the structure when it uses AITb-G (or AITb-U)

vs. the time taken by GSMN when it uses AITt-G (or AITt-U).

We conducted experiments on data sampled from randomly generated Bayesian networks

containing n = 8 variables, and connectivity parameters τ = 3, 5, 7. (These data sets are the

same used for the experiments of the previous section).

We also conducted experiments on data sampled from Markov networks of different number

of nodes n generated randomly by selecting the first m = µn
2 pairs in a random permutation of

all possible edges, with µ being a connectivity parameter (the factor 1/2 is necessary because

each edge contributes to the degree of two nodes). In the experiments we used µ = 1, 2, 4. For

each data set D in these six groups, we conducted experiments on subsets of D containing an

increasing number of data points. This was done in order to assess the running time of AITb

and AITt on the same conditions of reliability considered in the experiments that measures

the accuracy.
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Figure 4.7 Comparison of the running times of the PC algorithm when

it uses the bottom-up and top-down argumentative tests on

the general axioms (AITb-G and AITt-G respectively) to learn

the structure of a Bayesian network from data sampled from

Bayesian models with domain size n = 8 and maximum degrees

τ = 1, 3, 7. The bars show the absolute value of the running

time using a logarithmic scale.

Figures 4.7 and 4.8 shows a comparison of the argumentative tests AITb-G vs. AITt-G

and AITb-D vs. AITt-D on the PC algorithm, respectively. Each figure shows three plots for



118

 1

 10

 100

 1000

 10000

 10  100  1000  10000

Runtime PC for n = 8, τ  = 3
R

un
 ti

m
e 

 (
se

co
nd

s)

N

Bottom Up
Top Down

 1

 10

 100

 1000

 10000

 10  100  1000  10000

Runtime PC for n = 8, τ  = 5

R
un

 ti
m

e 
 (

se
co

nd
s)

N

Bottom Up
Top Down

 1

 10

 100

 1000

 10000

 10  100  1000  10000

Runtime PC for n = 8, τ  = 7

R
un

 ti
m

e 
 (

se
co

nd
s)

N

Bottom Up
Top Down

Figure 4.8 Comparison of the running times of the PC algorithm when

it uses the bottom-up and top-down argumentative tests on

the specific axioms (AITb-D and AITt-D respectively) to learn

the structure of a Bayesian network from data sampled from

Bayesian models with domain size n = 8 and maximum degrees

τ = 1, 3, 7. The bars show the absolute value of the running

time using a logarithmic scale.

different values of τ of the mean values (over runs for ten different networks) of the running

times of AITb-G and AITt-G shown as histogram bars in the first figure, and the running times

of AITb-D and AITt-D shown as histogram bars in the second figure. Note that both the x

and y-axes are plotted in log-scale. We can observe improvements in the running time of the

top-down algorithm of several orders of magnitude over the entire range of data set sizes in all

three plots of each figure. For instance, for the general axioms and τ = 3 (Fig. 4.7, leftmost

plot), the running time for N = 40 is 2 seconds for AITt against 1000 seconds for AITb, while

for N = 15000 is 500 seconds for AITt against 5000 seconds for AITb.
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Figure 4.9 Comparison of the running times of the GSMN algorithm when

it uses the bottom-up and top-down argumentative tests on the

general axioms (AITb-G and AITt-G respectively) to learn the

structure of a Markov network from data sampled from Markov

models with domain size n = 8 and connectivities µ = 1, 2, 4.

The bars show the absolute value of the running time using a

logarithmic scale.
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Figure 4.10 Comparison of the running times of the GSMN algorithm

when it uses the bottom-up and top-down argumentative tests

on the specific axioms (AITb-U and AITt-U respectively) to

learn the structure of a Markov network from data sampled

from Markov models with domain size n = 8 and connectivities

µ = 1, 2, 4. The bars show the absolute value of the running

time using a logarithmic scale.

Figures 4.9 and 4.10 shows a comparison of the argumentative tests AITb-G vs. AITt-G

and AITb-U vs. AITt-U using the GSMN algorithm. Each figure shows three plots for different

values of µ of the mean values (over runs for ten different networks) of the running times shown

as histogram bars. Again, both the x and y-axes are plotted in log-scale. We can again observe

improvements in running time of the top-down algorithm of several orders of magnitude over

the entire range of data set sizes in all plots. For instance, for the general axioms and µ = 3

(Fig. 4.9, leftmost), the running time for N = 40 is approximately 4 seconds for AITt against

1000 seconds for AITb, and for N = 15000 is 500 seconds for AITt against 8000 seconds for

AITb.

4.7.3 Top-down Approximate Algorithm Experiments

The goal of the experiments presented in this section is to demonstrate that the top-down

approximate algorithm of Section 4.6 improves the accuracy of independence tests on small

data sets while requiring a considerably smaller run time. We conducted experiments on

sampled and real data sets. For sampled data, we conducted a similar sequence of experiments

as the ones described in Section 4.7.1 on data sets sampled from Bayesian networks. We also

conducted experiments on data sampled from Markov networks. For each case we compared

the performance of the SITs against the performance of an argumentative independence test
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that uses the approximate algorithm of Section 4.6 to determine acceptance or rejection of

the corresponding propositional arguments. As in the bottom-up case we consider the general

and specific argumentative tests. Since this time we also consider experiments on Markov

networks, the corresponding tests are ÂIT-G for the general axioms, and ÂIT-D and ÂIT-U

for the specific axioms.

4.7.3.1 Sampled Data Experiments

For the case of Bayesian networks, we considered data sampled from randomly generated

Bayesian networks of sizes n = 8, and maximum degrees τ = 1, 3, 7 (same as the data sets used

in the experiments of Section 4.7.1). For each data set D in these three groups, we conducted

experiments on subsets of D containing an increasing number of data points. We report the

estimated accuracy calculated using Eq. 4.31, with Y = SIT, ÂIT-G, and ÂIT-D.
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Figure 4.11 Comparison of statistical tests (SIT) vs. approximate argu-

mentative tests on the general axioms (ÂIT-G) for data sets

sampled from Bayesian models for domain size n = 8 and max-

imum degrees τ = 1, 3, 7. The bars show the absolute value

of the accuracy, and the line curves show the difference be-

tween their accuracy with a positive value corresponding to

an improvement in the accuracy of ÂIT-G over the accuracy

of SIT.

Figure 4.11 shows a comparison of the argumentative tests ÂIT-G using the general axioms

with the corresponding SIT. The figure shows three plots for different values of τ of the mean

values (over runs for ten different networks) of ̂accuracy
data
SIT and ̂accuracy

data
dAIT−G (histograms),

and the difference ( ̂accuracy
data
dAIT−G − ̂accuracy

data
SIT ) (line graph) for different data set sizes N .

A positive value of the difference corresponds to an improvement of ÂIT-G over SIT. We can
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observe modest improvements over the entire range of data set sizes in all three cases of up to

5% for n = 8, τ = 5 and N = 600.
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Figure 4.12 Comparison of statistical tests (SIT) vs. approximate argu-

mentative tests on the directed axioms (ÂIT-D) for data sets

sampled from Bayesian models for domain size n = 8 and max-

imum degrees τ = 1, 3, 7. The bars show the absolute value

of the accuracy, and the line curves show the difference be-

tween their accuracy with a positive value corresponding to

an improvement in the accuracy of ÂIT-D over the accuracy

of SIT.

In those situations where the experimenter knows that the underlying distribution belongs

to the class of Bayesian networks it is appropriate to use the directed axioms of Eqs. (4.6)

instead of the general axioms of Eqs. (4.5). Figure 4.12 compares the argumentative test

ÂIT-D that uses the directed axioms vs. statistical tests. The plots follow the same format

as Figure 4.11, with histograms plotting the mean values of ̂accuracy
data
SIT and ̂accuracy

data
dAIT−D

and the line graphs showing the difference ( ̂accuracy
data
dAIT−D− ̂accuracy

data
SIT ). As in the case for

the AIT using the general axioms, we can observe improvements over the entire range of data

set sizes in all three cases. In this case however, the improvements are larger, reaching values

of up to 11% for n = 8, τ = 7 and N = 900. We also notice in both ÂIT-G and ÂIT-D that

larger improvements tend to appear in more connected domains i.e., for larger values of τ .

We also studied the effect that the improvement in the accuracy of the approximate argu-

mentative test has on the discovery of the structure of Bayesian networks. We use again the

PC algorithm to learn the structure from data sampled from randomly generated Bayesian

networks of sizes n = 8, 16, 24, and maximum degrees τ = 1, 3, 7. We compared the true

structure of the underlying model to the resulting structure of the PC algorithm when it uses
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SITs as independence tests, denoted PC-SIT, and its output when it uses the approximate

argumentative independence tests, denoted PC-ÂIT-G and PC-ÂIT-D when using the general

and directed axioms respectively. We evaluated the resulting networks by their ability to accu-

rately represent the true independences in the domain, estimated using the estimated accuracy

of Eq. (4.32), with Y = SIT, ÂIT-G and ÂIT-D.
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Figure 4.13 PC-Algorithm for SIT and ÂIT-G for domain sizes

n = 8, 16, 24 (columns), and maximum degree τ = 3, 5, 7

(rows). The bars show the absolute value of the accuracies

and the line curves shows the difference between their accu-

racy with a positive value correspond to an improvement in

the accuracy of ÂIT-G over the accuracy of SIT.

The comparison of the accuracy of the PC algorithm using SITs vs. using argumentative

tests ÂIT-G and ÂIT-D is shown in Figures 4.13 and 4.14, respectively. The figures contain

nine plots each for the different values of n and τ , and have the same format as in previous

figures. Once again, all nine plots show improvements of the argumentation approach over the
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Figure 4.14 PC-Algorithm for SIT and ÂIT-D for domain sizes

n = 8, 16, 24 (columns), and maximum degree τ = 3, 5, 7

(rows). The bars show the absolute value of the accuracies

and the line curves shows the difference between their accu-

racy with a positive value correspond to an improvement in

the accuracy of ÂIT-D over the accuracy of SIT.

entire range of data set sizes, with improvements of up to 7% for the general axioms (e.g., for

n = 16, τ = 5 and N = 600), and up to 13% for the specific axioms (e.g., for n = 16, τ = 7

and N = 1200 or n = 24, τ = 7, and N = 900, 1200, 1600 and 2200). We also note that the

improvements are sustained with increasing domain sizes n.

A similar sequence of experiments for assessing the performance of ÂIT was performed for

the case of Markov networks, with data sampled from randomly generated Markov networks

of sizes n = 8, and connectivities µ = 1, 2, 4. Once again, for each data set D in each of these

three groups, we conducted experiments on subsets of D containing an increasing number of

data points. We report the estimated accuracy calculated using Eq. (4.31), for each of the
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three tests Y = SIT, ÂIT-G, and ÂIT-U.
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Figure 4.15 Comparison of statistical tests (SIT) vs. approximate argu-

mentative tests on the general axioms (ÂIT-G) for data sets

sampled from Markov networks with n = 8 variables and con-

nectivities µ = 1, 2, 4. The bars show the absolute value of

the accuracy, and the line curves show the difference between

their accuracy with a positive value corresponding to an im-

provement in the accuracy of ÂIT-G over the accuracy of SIT.

Figure 4.15 shows a comparison of the argumentative test ÂIT-G using the general axioms

with the corresponding SIT. The figure shows three plots for different values of µ of the mean

values (over runs for ten different networks) of ̂accuracy
data
SIT and ̂accuracy

data
dAIT−G (histograms),

and the difference ( ̂accuracy
data
dAIT−G − ̂accuracy

data
SIT ) (line graph) for different data set sizes N .

As usual, a positive value of the difference corresponds to an improvement of ÂIT-G over SIT.

We can observe modest improvements over the entire range of data set sizes in all three cases

of up to 7% (e.g., for n = 8, µ = 4 and N = 1200).

When the experimenter knows that the underlying distribution belongs to the class of

Markov networks it is appropriate to use the undirected axioms of Eq. (4.7) instead of the

general axioms of Eq. (4.5). Figure 4.16 compares the argumentative test ÂIT-U that uses

the undirected axioms vs. statistical tests. The plots follow the same format as Figure 4.16,

with histograms plotting the mean values of ̂accuracy
data
SIT and ̂accuracy

data
dAIT−U and the line

graphs showing the difference ( ̂accuracy
data
dAIT−U − ̂accuracy

data
SIT ). Once again, we can observe

improvements over the entire range of data set sizes in all four cases. In this case however,

the improvement is considerably larger, with increases in the accuracy of up to 20% for n = 8,

µ = 7 and N = 1600. As in all previous cases, we notice in both ÂIT-G and ÂIT-U that larger

improvements tend to appear in more connected domains i.e., for larger values of µ.
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Figure 4.16 Comparison of statistical tests (SIT) vs. approximate argu-

mentative tests on the undirected axioms (ÂIT-U) for data

sets sampled from Markov networks with n = 8 variables and

connectivities µ = 1, 2, 4. The bars show the absolute value

of the accuracy, and the line curves show the difference be-

tween their accuracy with a positive value corresponding to

an improvement in the accuracy of ÂIT-U over the accuracy

of SIT.

As in the case of Bayesian networks, we also studied the effect that the improvement in the

accuracy of the approximate argumentative test has on the discovery of the structure of Markov

networks. In the following experiments we used the GSMN algorithm of Chapter 2 to learn the

structure from data sampled from randomly generated Markov networks of sizes n = 8, 16, 24,

and connectivities µ = 1, 2, 4, 8. We compared the true structure of the underlying model

to the resulting structure of the GSMN algorithm when it uses SITs as independence tests,

denoted GSMN-SIT, and its output when it uses the approximate argumentative independence

tests, denoted GSMN-ÂIT-G and GSMN-ÂIT-U when using general and undirected axioms

respectively. We evaluated the resulting networks using the following estimated accuracy,

similar to Eq. (4.32),

̂accuracy
GSMN
Y =

1

|T |

∣∣∣∣
{

t ∈ T | IGSMN-Y(t) = Itrue(t)
}∣∣∣∣. (4.34)

with Y = SIT, ÂIT-G and ÂIT-U.

The comparison of the accuracy of the GSMN algorithm using SITs vs. using argumentative

tests ÂIT-G or ÂIT-U is shown in Figures 4.17 and 4.18, respectively. The figures contain

twelve plots each for the different values of n and µ, and have the same format as in previous

figures. In these figures, plots with the same values of n are shown in the same column, and

plots with the same value of µ are shown in the same row. All plots show improvements of
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the argumentation approach over the entire range of data set sizes, with improvements of up

to 17% for the general axioms (e.g., for n = 16, µ = 8 and N = 600), and also up to 17% for

the undirected axioms (e.g., for n = 16, µ = 8 and N = 600). A few cases in the undirected

axioms (e.g., n = 8, τ = 2, and N = 600) show a minor decrease in accuracy in the order of at

most 1%.
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Figure 4.17 GSMN-Algorithm for SIT and ÂIT-G for domain sizes

n = 8, 16, 24 (columns), and connectivities µ = 1, 2, 4, 8 (rows).

The bars show the absolute value of the accuracies and the line

curves shows the difference between their accuracy with a pos-

itive value correspond to an improvement in the accuracy of

ÂIT-G over the accuracy of SIT.



127

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  100  1000  10000

Accuracy GSMN-ALG for n = 8, µ  = 1

A
cc

ur
ac

y

N

SIT
AIT-U
accuracy(AIT-U)-accuracy(SIT)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  100  1000  10000

Accuracy GSMN-ALG for n = 16, µ  = 1

A
cc

ur
ac

y

N

SIT
AIT-U
accuracy(AIT-U)-accuracy(SIT)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  100  1000  10000

Accuracy GSMN-ALG for n = 24, µ  = 1

A
cc

ur
ac

y

N

SIT
AIT-U
accuracy(AIT-U)-accuracy(SIT)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  100  1000  10000

Accuracy GSMN-ALG for n = 8, µ  = 2

A
cc

ur
ac

y

N

SIT
AIT-U
accuracy(AIT-U)-accuracy(SIT)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  100  1000  10000

Accuracy GSMN-ALG for n = 16, µ  = 2

A
cc

ur
ac

y

N

SIT
AIT-U
accuracy(AIT-U)-accuracy(SIT)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  100  1000  10000

Accuracy GSMN-ALG for n = 24, µ  = 2

A
cc

ur
ac

y

N

SIT
AIT-U
accuracy(AIT-U)-accuracy(SIT)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  100  1000  10000

Accuracy GSMN-ALG for n = 8, µ  = 4

A
cc

ur
ac

y

N

SIT
AIT-U
accuracy(AIT-U)-accuracy(SIT)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  100  1000  10000

Accuracy GSMN-ALG for n = 16, µ  = 4
A

cc
ur

ac
y

N

SIT
AIT-U
accuracy(AIT-U)-accuracy(SIT)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  100  1000  10000

Accuracy GSMN-ALG for n = 24, µ  = 4

A
cc

ur
ac

y

N

SIT
AIT-U
accuracy(AIT-U)-accuracy(SIT)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  100  1000  10000

Accuracy GSMN-ALG for n = 8, µ  = 8

A
cc

ur
ac

y

N

SIT
AIT-U
accuracy(AIT-U)-accuracy(SIT)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  100  1000  10000

Accuracy GSMN-ALG for n = 16, µ  = 8

A
cc

ur
ac

y

N

SIT
AIT-U
accuracy(AIT-U)-accuracy(SIT)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  100  1000  10000

Accuracy GSMN-ALG for n = 24, µ  = 8

A
cc

ur
ac

y

N

SIT
AIT-U
accuracy(AIT-U)-accuracy(SIT)

Figure 4.18 GSMN-Algorithm for SIT and ÂIT-U for domain sizes

n = 8, 16, 24 (columns), and connectivities µ = 1, 2, 4, 8 (rows).

The bars show the absolute value of the accuracies and the line

curves shows the difference between their accuracy with a pos-

itive value correspond to an improvement in the accuracy of

ÂIT-U over the accuracy of SIT.

4.7.3.2 Real-world Data Experiments

We also tested the top-down approximate algorithm under more challenging conditions

using real-world data sets obtained from the UCI machine learning repository (D.J. Newman

and Merz, 1998a) and the Knowledge Discovery Data repository (D.J. Newman and Merz,

1998b). For each data set D, we conducted experiments on subsets d of D containing an

increasing number of data points N . Since the reliability of a test typically increases with the

amount of data available, this allowed us to assess the performance of the independence tests

(statistical or argumentative) on conditions of increasing reliability. To reduce variance, each
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experiment was repeated for ten subsets d of equal size, obtained by permuting the data points

of D randomly and using the first N as the subset d.

For real-world data sets the underlying model is unknown. Therefore, we can only be sure

the general axioms of Eq. (4.5) hold, and thus in the following experiments we only report the

accuracy of ÂIT-G, the approximate argumentative independence test defined over the general

axioms. The accuracy for this set of experiments is defined by Eq. (4.33) introduced for the

real-world experiments of the bottom-up argumentative algorithm. Here instead, Y is equal

to either SIT or ÂIT-G. Also, since the underlying model is not known, it is impossible to

know the true value Itrue of any independence t. We therefore approximate it as we did for

the bottom-up case, namely, by conducting a statistical test on the entire data set, and limit

the size N of the data set subsets that we use to a third of the size of the entire data set.

Figure 4.19 shows the results of our comparison between approximate argumentative tests

ÂIT-G and statistical tests SIT for real-world data sets. The figure contains 6 plots, one per

data set D, that depict the difference between the accuracy of ÂIT-G and that of SIT, where as

usual a positive value denotes an improvement of ÂIT-G over SIT. The figure demonstrates the

advantage of the argumentative approach, with all data sets reaching positive improvements

in accuracy of up to 4%.

4.7.4 Approximate vs. Exact Top-down Algorithm Experiments

In this section we conduct experiments to assess the performance of the approximate top-

down algorithm when compared against its exact counterpart. We conduct experiments to

compare the running time of the two algorithms in order to prove that the approximation does

improve efficiency. We also conduct experiments to compare the improvements in accuracy

(against a statistical test) of the approximate and exact versions to demonstrate that the

approximation does not produce a substantial loss in accuracy improvements.
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Figure 4.19 Accuracy improvements of ÂIT-G over SIT for a number of

real-world data sets.

4.7.4.1 Running Time

The first set of experiments compare the running time of the exact top-down argumentative

test AITt and the running time of the approximate top-down argumentative test ÂIT, when

they are used to discover the structure of Bayesian and Markov networks. As usual, we

consider three versions of each test, one that uses the general axioms (AITt-G and ÂIT-G,
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respectively), one that uses the specific axioms (AITt-U and ÂIT-U, respectively), and one

that uses the directed axioms (AITt-D and ÂIT-D, respectively). For Bayesian networks, we

compare the running time taken by the PC algorithm to learn the structure when it uses

AITt-G (or AITt-D) vs. the time taken by the PC algorithm when it uses ÂIT-G (or ÂIT-D).

Similarly, for Markov networks we compare the running time taken by the GSMN algorithm

to learn the structure when it uses AITt-G (or ÂIT-G) vs. the time taken by GSMN when it

uses AITt-U (or ÂIT-U).

We conducted experiments on data sampled from randomly generated Bayesian and Markov

networks containing n = 8 variables, and connectivity parameters τ = 3, 5, 7, for the case of

Bayesian networks, and µ = 1, 2, 4, for the case of Markov networks. (These data sets are

the same used for the experiments of the previous sections). For each data set D in these

six groups, we conducted experiments on subsets of D containing an increasing number of

data points. This was done in order to assess the running time of AITt and ÂIT on the same

conditions of reliability considered in the experiments that measures the accuracy.
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Figure 4.20 Comparison of the running times of the PC algorithm when it

uses the exact and approximate top-down argumentative tests

on the general axioms (AITt-G and ÂIT-G respectively) to

learn the structure of a Bayesian network from data sampled

from Bayesian models with domain size n = 8 and maximum

degrees τ = 1, 3, 7. The bars show the absolute value of the

running time.

Figures 4.20 and 4.21 shows a comparison of the argumentative tests AITt-G vs. ÂIT-G

and AITt-D vs. ÂIT-D on the PC algorithm. Each figure shows three plots for different values

of τ of the mean values (over runs for ten different networks) of the running times of PC-

AITt-G and PC-ÂIT-G shown as histogram bars in the first figure, and the running times of
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Figure 4.21 Comparison of the running times of the PC algorithm when it

uses the exact and approximate top-down argumentative tests

on the specific axioms (AITt-D and ÂIT-D respectively) to

learn the structure of a Bayesian network from data sampled

from Bayesian models with domain size n = 8 and maximum

degrees τ = 1, 3, 7. The bars show the absolute value of the

running time.

PC-AITt-D and PC-ÂIT-D shown as histogram bars in the second figure. Note that both the

x and y-axes are plotted in log-scale. We can observe improvements in the running time of the

approximate algorithm of almost one order of magnitude in the entire range of data set sizes

in all three plots of each figure. For instance, for the general axioms and τ = 3 (Fig. 4.20 left),

the running time for N = 40 is 0.2 seconds for PC-ÂIT-G against 3 seconds for PC-AITt-G,

and for N = 15000 is 30 seconds for PC-ÂIT-G against 250 seconds for AITt-G.
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Figure 4.22 Comparison of the running times of the GSMN algorithm

when it uses the exact and approximate top-down argumenta-

tive tests on the general axioms (AITt-G and ÂIT-G respec-

tively) to learn the structure of a Markov network from data

sampled from Markov models with domain size n = 8 and con-

nectivities µ = 1, 2, 4. The bars show the absolute value of the

running time.

Figures 4.22 and 4.23 shows a comparison of the argumentative tests AITt-G vs. ÂIT-G and
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Figure 4.23 Comparison of the running times of the GSMN algorithm

when it uses the exact and approximate top-down argumenta-

tive tests on the specific axioms (AITt-U and ÂIT-U respec-

tively) to learn the structure of a Markov network from data

sampled from Markov models with domain size n = 8 and con-

nectivities µ = 1, 2, 4. The bars show the absolute value of the

running time.

AITt-U vs. ÂIT-U on the GSMN algorithm. Each figure shows three plots for different values

of τ of the mean values (over runs for ten different networks) of the running times of GSMN-

AITt-G and GSMN-ÂIT-G shown as histogram bars in the first figure, and the running times

of GSMN-AITt-U and GSMN-ÂIT-U shown as histogram bars in the second figure. Again,

both the x and y-axes are plotted in log-scale. We can again observe improvements in running

time of the approximate algorithm of almost one order of magnitude in the entire range of

data set sizes in all three plots of each figure. For instance, for the general axioms and µ = 7

(Fig. 4.20, rightmost plot), the running time for N = 40 is 1.5 seconds for GSMN-ÂIT-U

against 8 seconds for GSMN-AITt-U, and for N = 15000 is 200 seconds for GSMN-ÂIT-U

against 1000 seconds for GSMN-AITt-U.

4.7.4.2 Accuracy

In this second set of experiments we compare the accuracy of the exact argumentative test

and the approximate argumentative test.

For Bayesian networks, we report the accuracy of the network output by the PC algorithm

computed using Eq. (4.32), with Y = AITt-G, AITt-D, ÂIT-G, and ÂIT-D, whereas for Markov

networks we use Eq. (4.34) for Y = AITt-G, AITt-U, ÂIT-G, and ÂIT-U.

We conducted experiments on the same data sets used in the run time experiments of the
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previous section, i.e., sampled from randomly generated Bayesian and Markov networks with

n = 8 variables, and connectivity parameters τ = 3, 5, 7, for the case of Bayesian networks,

and µ = 1, 2, 4, for the case of Markov networks. And, as usual, for each data set D in these

six groups we conducted experiments on subsets of D containing an increasing number of data

points.
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Figure 4.24 Comparison of the accuracy of the network output by the

PC algorithm when it uses the exact and approximate top–

down argumentative tests on the general axioms (AITt-G and

ÂIT-G respectively). We show plots for data sampled from

Bayesian networks with n = 8 variables and maximum degrees

τ = 1, 3, 7. The bars show the absolute value of the accuracy.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10  100  1000  10000

Accuracy PC for n = 8, τ  = 3

A
cc

ur
ac

y

N

Top-down Exact
Top-down Approximate

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10  100  1000  10000

Accuracy PC for n = 8, τ  = 5

A
cc

ur
ac

y

N

Top-down Exact
Top-down Approximate

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10  100  1000  10000

Accuracy PC for n = 8, τ  = 7

A
cc

ur
ac

y

N

Top-down Exact
Top-down Approximate

Figure 4.25 Comparison of the accuracy of the network output by the

PC algorithm when it uses the exact and approximate top–

down argumentative tests on the directed axioms (AITt-D and

ÂIT-D respectively). We show plots for data sampled from

Bayesian networks with n = 8 variables and maximum degrees

τ = 1, 3, 7. The bars show the absolute value of the accuracy.

Figures 4.24 and 4.25 show a comparison of the argumentative tests AITt-G vs. ÂIT-G and

AITt-D vs. ÂIT-D on the PC algorithm. Each figure shows three plots for different values of τ

of the mean values (over runs for ten different networks) of the accuracy of AITt-G and ÂIT-G

shown as histogram bars in the first figure, and the accuracy of AITt-D and ÂIT-D shown as
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histogram bars in the second figure. We can observe the accuracy of both algorithms matches

in all but few cases. We found only a single case in which the accuracy of the approximate

case is considerably smaller than its exact counterpart. This case is for the directed axioms

figure, τ = 5, N = 1200, where the accuracy of the approximate case is almost 10% lower than

the accuracy of the exact algorithm.
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Figure 4.26 Comparison of the accuracy of the network output by the

GSMN algorithm when it uses the exact and approximate top–

down argumentative tests on the general axioms (AITt-G and

ÂIT-G respectively). We show plots for data sampled from

Markov networks with n = 8 variables and maximum degrees

µ = 1, 2, 4. The bars show the absolute value of the accuracy.
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Figure 4.27 Comparison of the accuracy of the network output by the

GSMN algorithm when it uses the exact and approximate top–

down argumentative tests on the undirected axioms (AITt-U

and ÂIT-U respectively). We show plots for data sampled from

Markov networks with n = 8 variables and maximum degrees

µ = 1, 2, 4. The bars show the absolute value of the accuracy.

Figures 4.26 and 4.27 show a similar comparison of the argumentative tests AITt-G vs.

ÂIT-G and AITt-U vs. ÂIT-U on the GSMN algorithm. Each figure shows three plots for

different values of τ of the mean values (over runs for ten different networks) of the accuracy

of AITt-G and ÂIT-G shown as histogram bars in the first figure, and the accuracy of AITt-U
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and ÂIT-U shown as histogram bars in the second figure. Again, both the x and y-axes are

plotted in log-scale. We can again observe that the accuracy of both algorithms matches in all

but few cases (e.g., µ = 4, N = 200–900 of the general case, and µ = 4, N = 200–900 of the

specific case) with the largest difference being less than 4%.

4.8 Summary

We presented a framework for addressing one of the most important problems of independence-

based structure discovery algorithms, namely the problem of unreliability of statistical inde-

pendence tests. Our main idea was to recognize that there exist constraints in the outcome of

conditional independence tests—in the form of Pearl’s axiomatic characterization of the condi-

tional independence relation—that can be exploited to correct unreliable statistical tests. We

modeled this setting as a knowledge base containing conditional independences that are po-

tentially inconsistent, and used the preference-based argumentation framework to reason with

and possibly resolve these inconsistencies. We presented in detail how to apply the argumen-

tation framework to independence knowledge bases and how to compute the preference among

the independence propositions. We also presented an approximate algorithm with polynomial

running time and showed experimentally its outcome is comparable to the exact case. Our

experimental results on sampled and real-world data sets show improvements in the number

of correct tests (as measured by accuracy on independences) for an overwhelming majority of

situations considered, with maximum improvements of up to 20% in certain cases.
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CHAPTER 5. Conclusions

In this thesis we addresses the problem of efficiently learning graphical probabilistic models

from data using the independence-based approach. We presented, to the best of our knowledge,

the first algorithms for learning the structure of Markov networks of a domain from data using

the independence-based approach. We also proposed and evaluated a framework based on

argumentation that addresses one of the most important problems of the independence-based

approach, namely the problem of the unreliability of statistical independence tests.

As pointed out in the introduction, in the past the problem of structure learning of undi-

rected graphical models has proved to be extremely challenging. Existing approaches require

the computation of an expensive score measure to guide the search of the optimal model.

The computation of this score requires the complete model, i.e., structure and parameters,

which for undirected models involves a computationally expensive normalization step. The

independence-based approach in general, and our algorithms in particular, do not require the

computation of the model parameters during structure discovery, and thus result in more

efficient algorithms.

We presented three structure learning algorithms: the GSMN and GSIMN algorithms in

Chapter 2, and the PFMN algorithm in 3. To the best of the author’s knowledge, GSMN

is the first independence-based algorithm for learning Markov networks that has appeared in

the literature. Although GSMN is interesting and useful in itself, it can be further extended

and made more efficient in regards of number of tests required and accuracy; we achieve

that goal in the GSIMN and PFMN algorithms. GSIMN is an extension of GSMN that avoids

executing unnecessary independence tests by exploiting Pearl’s axioms, a set of well-known and

very general constraints that are satisfied by the conditional independence relation of a domain
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whose probabilistic distribution is faithful to a Markov network. During the structure discovery

process, these axioms were used as inference rules to infer the value of unseen independencies

from those seen so far. The result is a very efficient algorithm that scales up polynomially in

the weighted number of tests required. Moreover, both the GSMN and GSIMN algorithms are

provably correct under assumptions—their proof of correctness is presented in Appendices A

and B.

One disadvantage of the GSMN and GSIMN algorithms is that they order the tests to be

performed in a relatively rigid way, resulting in potential inefficiencies in the computational

cost that they require to learn the structure. The PFMN algorithm instead greedily selects

the optimal sequence of tests according to information gain, resulting in significant efficiency

improvements. Together with the PFMN algorithm, we presented in Chapter 3 an analysis of

the domain of structures and independencies using an explicit generative model. The generative

model proposed was also used to derived an expression for the information gain, but it is also

an interesting and informative contribution in itself.

The experiments demonstrate that both the GSIMN and PFMN algorithms satisfy our main

design goal of improving efficiency in terms of the weighted number of tests without adversely

affecting the quality of the output network. When compared against GSMN, GSIMN showed

a decrease in the weighted number of tests of up to 38% for difficult (large) artificial domains

and up to 75% for real-world data, and output network accuracy comparable to that of GSMN,

with some cases showing improvement. Compared against GSIMN, PFMN showed a decrease

in the weighted number of tests of up to 85% for both sampled and real-world data, and output

network accuracy comparable to that of GSIMN.

In addition to these algorithms, we addressed in Chapter 4 one of the main criticisms of

independence-based structure discovery algorithms, namely the unreliability of statistical in-

dependence tests for small data sets. The chapter introduced the argumentative independence

tests (AIT), whose idea is to exploit the constraints in the outcome of conditional independence

tests (formalized by Pearl’s axioms) to correct unreliable statistical tests. We modeled the set

of the outcomes of all possible tests in a domain as a knowledge base containing potentially
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inconsistent conditional independencies, and used the sound theoretical framework argumen-

tation framework to reason with and possibly resolve some of these inconsistencies. Under

this framework, we presented an exact and also a more practical approximate top-down algo-

rithm that runs in polynomial time and presents improvements in the accuracy with respect

to the accuracy achieved by statistical tests of up to 20%. Experimental results show that the

approximate algorithm’s result are similar to the outcomes of its exact counterpart.

In summary, our contributions include a set of practical algorithms that efficiently and

accurately discover the conditional independence structure of Markov networks from data.
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APPENDIX A. Correctness of GSMN

For the proof of correctness we make the following assumptions.

• The axioms of Eqs. (1.7) hold.

• The probability distribution of the domain is strictly positive.

• Tests are conducted by querying an oracle, which returns the true value of each test in

the underlying model.

For each variable X ∈ V visited during the main loop of the GSMN algorithm (lines 8–24),

the set BX of variable X ∈ V is constructed by growing and shrinking a set S, starting from

the empty set. We denote by MB(X) the true Markov blanket of X, and prove here that the

set BX (returned by GSMN) is in fact equal to MB(X).

The algorithm examines every variable Y ∈ λX for inclusion to S (and thus to BX) during

the grow phase (lines 15 to 21) and, if Y was added to S during the grow phase, it considers it

for removal during the shrinking phase (line 22). Each variable Y that has been visited already

(and thus its blanket BY has been computed) is excluded from the grow and shrink phases of

X by removing it from queue λX (line 14). At the end of the iteration for X, a subset of these

variables (the set T) is added to set S to form the blanket of X returned (line 24).

To guide the reader, in Figure A.1 we provide a graph showing the dependence relationship

of observations, lemmas and theorems appearing in this proof. It also allows one to verify that

there are no cycles in the entire proof of correctness. The general idea behind the proof is to

show that a variable Y appears in the final blanket of X if and only if (X 6⊥⊥Y | V − {X, Y }).

The proof proceeds by extending the conditioning set of tests executed between X and Y (the
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Figure A.1 Proof graph for Appendix A.

grow and shrink tests) to the all remaining variables V−{X, Y }. This is done in Lemmas A.6

and A.12.

We now introduce notation and definitions and prove preliminary lemmas. We call the

test executed between X and Y during the grow phase the grow test of Y on X (line 20).

The test executed between X and Y during the shrinking phase is called the shrink test of

Y on X (line 23). If line 21 is reached, that is, if pXY < 1 − α (indicating X and Y are

unconditionally dependent) and the grow test of Y is false, we say that Y is grown into BX .

Otherwise, if pXY ≥ 1− α (indicating X and Y are unconditionally independent) or the grow

test is true, we say that Y is not grown into BX . If the shrink test of Y is true, indicating

independence (false, indicating dependence), we say that Y was shrunk (not shrunk) from

BX . This assumes that X precedes Y in the index permutation π (the “variable visit” order);

the roles of X and Y are exchanged if Y precedes X in π.

Note that if X precedes Y in π during the execution of the loop for X, then Y /∈ T and

Y /∈ F. In particular, we can make the following observation.

Observation A.1. The grow and (if necessary) the shrink test of Y on X are the only ones
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done between X and and Y during the execution of the algorithm.

We denote by SG the set of variables found dependent of X during the grow phase, i.e.,

the value of S at the end of the grow phase (line 22), and by SS the set of variables found

dependent of X during the shrink phase, i.e., the value of S at the end of the shrink phase (line

24). We also denote by G the set of variables found independent of X during the grow phase

and by U = [U0, . . . , Uk] the sequence of variables shrunk from BX , i.e., found independent

of X during the shrink phase. The sequence U is assumed ordered as follows: if i < j then

variable Ui was found independent from X before Uj during the shrinking phase. A prefix of

the first i variables [U0, . . . , Ui−1] of U is denoted by Ui. For some test t performed during

the algorithm, we define k(t) as the integer such that Uk(t) is the prefix of U containing the

variables that were found independent of X in this loop before t. Furthermore, we abbreviate

Uk(t) by Ut.

Lemma A.2. Let Y ∈ SS and t = (X, Y | Z) denote the shrink test of Y . Then Z =

SG ∪T− {Y } −Ut.

Proof. According to line 23 of the algorithm, Z = S∪T−{Y }. At the beginning of the shrink

phase (line 22) S = SG, but variables found independent afterward and until t is conducted are

removed from S in line 23. Thus, by the time t is performed, S = SG−Ut and the conditioning

set becomes SG ∪T− {Y } −Ut.

From the definition of U and the fact that in the grow phase the conditioning set increases

by dependent variables only, we can immediately make the following observation:

Observation A.3. For some variable Ui ∈ U, if t denotes the shrink test performed on Ui

then Ut = Ui−1.

Corollary A.4. (X⊥⊥Ui | SG ∪T−Ui).

Proof. The proof follows immediately from Lemma A.2, Observation A.3, and the fact that

Ui = Ui−1 ∪ {Ui}.
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The following lemma shows that if a certain independence holds, the conditioning set of a

dependence can be increased by one variable.

Lemma A.5. Let X, Y ∈ V, Z ⊆ V − {X, Y }, and Z′ ⊆ Z. Then ∀W ∈ V,

(X 6⊥⊥Y | Z) ∧ (X⊥⊥W | Z′ ∪ {Y }) =⇒ (X 6⊥⊥Y | Z ∪ {W}).

Proof. We prove by contradiction, and make use of the axioms of Intersection (I), Strong Union

(SU), and Decomposition (D). Let us assume that (X 6⊥⊥Y | Z) and (X⊥⊥W | Z′ ∪ {Y }) but

(X⊥⊥Y | Z ∪ {W}). Then

(X⊥⊥Y | Z ∪ {W}) ∧ (X⊥⊥W | Z′ ∪ {Y })

SU
=⇒ (X⊥⊥Y | Z ∪ {W}) ∧ (X⊥⊥W | Z ∪ {Y })

I
=⇒ (X⊥⊥{Y, W} | Z)

D
=⇒ (X⊥⊥Y | Z) ∧ (X⊥⊥W | Z)

=⇒ (X⊥⊥Y | Z).

This contradicts the assumption (X 6⊥⊥Y | Z).

The following lemma shows that if a variable Y was not shrunk from BX i.e., Y ∈ SS , then

X and Y are remain dependent given a set of variables that contains all variables in set Ut,

where t is the shrink test between X and Y .

Lemma A.6. Let Y ∈ SS and let t denote the shrink test of Y , then ∀i ∈ {0, 1, . . . , k(t)},

(X 6⊥⊥Y | SG ∪T− {Y } −Ui).

Proof. The proof is by induction on decreasing values of i, starting at i = k(t).

• Base case (i = k(t)): From Lemma A.2, t = (X, Y | SG∪T−{Y }−Ut), which is equal

to (X, Y | SG ∪T− {Y } −Uk(t)) by the definition of Ut. Since Y ∈ SS , it must be the

case that this test was found dependent, i.e., (X 6⊥⊥Y | SG ∪T− {Y } −Uk(t)).

• Inductive step: Let us assume that the statement is true for i = m, 1 ≤ m ≤ k(t):

(X 6⊥⊥Y | SG ∪T− {Y } −Um). (A.1)
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We need to prove that this is also true for i = m− 1:

(X 6⊥⊥Y | SG ∪T− {Y } −Um−1).

By corollary A.4, we have

(X⊥⊥Um | SG ∪T−Um)

and by Strong Union,

(X⊥⊥Um | (SG ∪T−Um) ∪ {Y })

or

(X⊥⊥Um | (SG ∪T−Um − {Y }) ∪ {Y }). (A.2)

From Eqs. (A.1), (A.2) and Lemma A.5 we get the desired relation:

(X 6⊥⊥Y | (SG ∪T− {Y } −Um) ∪ {Um}) = (X 6⊥⊥Y | SG ∪T− {Y } −Um−1).

Lemma A.7. If Y /∈ SS ∪T then exists a set A ⊆ V − {X, Y } such that (X⊥⊥Y | A).

Proof. If Y /∈ SS then: (i) Y /∈ λX , or (ii) Y was not grown into BX , or (iii) Y was grown

into BX but later shrunk from it. Cases (ii) and (iii) imply X and Y must have been found

independent in the corresponding tests, which implies the lemma consequent. Case (i) can

occur if either Y ∈ T or Y ∈ F. Since the former is false by assumption, it must be true

that Y ∈ F i.e., Y was visited before X and X /∈ BY . Let us assume that there is no set

A ⊆ V − {X, Y } such that (X⊥⊥Y | A). Then, while visiting Y , both the grow and shrink

tests between Y and X must be dependent, and thus X must be added to BY in line 24.

Since these are the only opportunities for X to be in or out of BY (Observation A.1), this is

a contradiction.

Lemma A.8. There exists a set A such that (X⊥⊥Y | A) if and only if Y /∈MBX .

Proof. The proof follows from Theorems A.15 and A.16 (presented near the end of this appen-

dix) and the Strong Union axiom.
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Lemma A.9. MBX ⊆ SS ∪T.

Proof. We must prove that Y ∈MBX =⇒ Y ∈ SS ∪T. Let us assume that Y ∈MBX but

Y /∈ SS ∪T. From Y /∈ SS ∪T and Lemmas A.7 and A.8 we can conclude that Y /∈MBX , a

contradiction.

Lemma A.10. For every Y ∈ F, (X⊥⊥Y | SS ∪T).

Proof. By the definition of F we have that for some A ⊆ V − {X, Y }:

(X⊥⊥Y | A)

By Lemma A.8 this implies

X /∈MBY .

By the definition of the Markov blanket of Y , this implies

(X⊥⊥Y |MBY )

which, by Lemma A.8 again, this implies

Y /∈MBX .

By the definition of the Markov blanket again this implies

(X⊥⊥Y |MBX)

which by Lemma A.9 and the Strong Union axiom implies

(X⊥⊥Y | SS ∪T).

Observation A.11. By definition of SG, we have that for every test t = (X, Y | Z) performed

during the grow phase, Z ⊆ SG ⊆ SG ∪T.
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The following lemma shows that if a variable Y was not shrunk from BX i.e., Y ∈ SS , then

X and Y remain dependent given a set of variables that contains all variables in set G, the

set of variables found independent of X during the grow phase, and all variables in F, the set

of variables already visited that do not contain X in their blankets (as defined in line 13).

Lemma A.12. Let Y ∈ SS, and let C = {C0, . . . , C|C|} = G ∪ F. If we denote by Ci

the first i elements of an arbitrary ordering of set C, then for all i = 0, . . . , |C|, (X 6⊥⊥Y |

SG ∪T ∪Ci − {Y }).

Proof. The proof is by induction on increasing values of i.

• Base Case (i = 0): Follows directly from Lemma A.6 for i = 0 since C0 = U0 = ∅.

• Inductive Step: Let us assume that the statement is true for i = m, 0 ≤ m ≤ |C|:

(X 6⊥⊥Y | SG ∪T ∪Cm − {Y }). (A.3)

We need to prove that it is also true for i = m + 1:

(X 6⊥⊥Y | SG ∪T ∪Cm+1 − {Y }). (A.4)

We consider two cases:

– Case 1 (Cm ∈ G): From Observation A.11 the grow test of Cm results in the

independence:

(X⊥⊥Cm | Z), where Z ⊆ SG ∪T.

– Case 2 (Cm ∈ F): From Lemma A.10 and the fact that SS ⊆ SG =⇒ SS ∪T ⊆

SG ∪T we have that:

(X⊥⊥Cm | Z), where Z ⊆ SG ∪T.

That is, both cases yields the same independence statement. By the Strong Union axiom

this can become:

(X⊥⊥Cm | Z ∪ {Y }) where Z ⊆ SG ∪T (A.5)
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or equivalently

(X⊥⊥Cm | (Z− {Y }) ∪ {Y }) where Z ⊆ SG ∪T. (A.6)

Since Z ⊆ SG ∪T ⊆ SG ∪T ∪Cm, we have that Z− {Y } ⊆ SG ∪T ∪Cm, and so from

Eq. (A.3) and Lemma A.5 we get the desired relation:

(X 6⊥⊥Y | (SG ∪T ∪Cm − {Y }) ∪ Cm) = (X 6⊥⊥Y | SG ∪T ∪Cm+1 − {Y }).

The following lemma, combined with Lemma A.12, implies that for every variable Y ∈ SS ,

X and Y are dependent given the universe V − {X, Y }.

Lemma A.13. SG ∪T ∪G ∪ F− {Y } = V − {X, Y }.

Proof. In loop 4-7, the queue λX is populated with all elements in V − {X}, and then, in

line 14, all elements in T and F are removed from it. Thus, at the beginning of X’s visit,

λX ∪ F ∪ T = V − {X}. The grow phase then partitions λX into variables dependent of X

(set SG) and independent of X (set G).

Lemma A.14. ∀X, Y ∈ V, Y ∈ BX ⇐⇒ (X 6⊥⊥Y | V − {X, Y }).

Proof. The set BX is set to SS ∪T in line 24, and thus it is equivalent to prove:

(Y ∈ SS) ∨ (Y ∈ T) ⇐⇒ (X 6⊥⊥Y | V − {X, Y }).

• (Proof of⇐=): We prove by contradiction. Let us assume that (A) (X 6⊥⊥Y | V−{X, Y }),

(B) Y /∈ SS , and (C) Y /∈ T are true. From (B), (C), and Lemma A.7 there must be

a set A such that (X⊥⊥Y | A), which in turn implies (X⊥⊥Y | V − {X, Y }) by Strong

Union, contradicting (A).

• (Proof of =⇒): We consider the cases Y ∈ SS and Y ∈ T separately:

– (Y ∈ SS): Here, (X 6⊥⊥Y | V − {X, Y }) follows from lemma A.12 as a special case

for i = |C|, since SG ∪T ∪G ∪ F− {Y } = V − {X, Y } as proved in Lemma A.13.
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– (Y ∈ T): We use TZ and SZ
S to denote sets T and SS during the visit of variable

Z. By definition of TX (line 12), if Y ∈ TX then (i) X must be in BY which equals

SY
S ∪ TY , and (ii) X is visited after Y . From (ii) it follows that X /∈ TY , which

together with (i) proves that X ∈ SY
S .

The proof reduces then to proving that X ∈ SY
S implies (X 6⊥⊥Y | V − {X, Y }),

which follows from Lemma A.12 (i = |C|) and Lemma A.13.

We now reproduce a theorem and a corollary from Pearl (1988) (first published in Pearl

and Paz (1985)):

Theorem A.15. (Pearl and Paz, 1985) Every dependence model M satisfying symmetry,

decomposition, and intersection (Eqs. (1.7)) has a unique Markov network G = (V,E) produced

by deleting from the complete graph every edge (X, Y ) for which (X⊥⊥Y | V − {X, Y }) holds

in M , i.e.,

(X, Y ) /∈ E ⇐⇒ (X⊥⊥Y | V − {X, Y }) in M.

The following results is also proved in Pearl (1988) (as a corollary of a theorem not shown

here):

Theorem A.16. (Pearl and Paz, 1985) The Markov network G = (V,E) of any strictly

positive distribution can be constructed by connecting each variable X to all members of its

Markov blanket MB(X), i.e.

Y ∈MB(X) ⇐⇒ (X, Y ) ∈ E.

We can now prove our main theorem that shows that GSMN recovers the correct Markov

blanket of each variable in the domain.

Theorem A.17. Assuming the axioms of Eqs. 1.7 and domain distribution positivity, the

GSMN algorithm recovers the correct Markov blanket MB(X) of each variable X ∈ V, that is,

∀X ∈ V, BX = MB(X).
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Proof. The axioms in Eqs. 1.7 include the assumptions of Theorem A.15, and thus its conse-

quent holds. Theorem A.16 holds under our assumption of domain distribution positivity. We

thus have:

Y ∈ BX Lemma A.14
⇐⇒ (X 6⊥⊥Y | V(G)− {X, Y })

Thm A.15
⇐⇒ (X, Y ) ∈ E(G)

Thm A.16
⇐⇒ Y ∈MB(X).
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APPENDIX B. Correctness of GSIMN

The GSIMN algorithm differs from GSMN in four places: (A) the initialization phase, lines

4–6, (B) the use of test subroutine I ′ instead of I, (C) the change of grow order of currently

grown variable Y , lines 26–29, and (D) the change in visit order of variables not yet visited,

lines 31–34.

The new initialization phase in GSIMN simply initializes the knowledge base entries KXY

and KY X , which influence the algorithm only through subroutine I ′. The subroutine I ′ is

correct as long as each of the independence tests is correct, which is true by assumption, since

it is only used as a repository of independence information gathered though such tests.

The change in grow and visit orders (cases (C) and (D) above) affects only the order of

variables not yet visited. The proof of correctness of GSMN presented in the previous section

is done for the loop of an arbitrary variable X and made no assumption on any particular grow

order (see Lemma A.12). The only place where any ordering in the variables is considered is

in Lemma A.6. However, this lemma, although it considers the order in which variables are

shrunk, it does not make any assumptions about this ordering, i.e., the proof works for any

given ordering. Therefore the proof of correctness of GSMN transfers directly to GSIMN.
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APPENDIX C. Computability and Validity of the Argumentative

Independence Test

In this appendix we prove the computability and validity of the argumentative independence

test under the assumption that the preference-based argumentation framework it uses contains

a strict preference relation (c.f. Definition 4.14), which is the case for independence-based

PAFs (c.f. Section 4.3.3). We first prove computability in Theorem (4.20) (repeated below for

convenience), followed by validity in Theorem (4.17) (also repeated below).

C.1 Computability of the Argumentative Independence Test

In this section we prove the computability of the argumentative independence test. We

first introduce some notation. We denote independence propositions (e.g. (X⊥⊥Y | Z)) by σ

and their negation (e.g., (X 6⊥⊥Y | Z)) by ¬σ. We abbreviate their corresponding propositional

arguments ({σ}, σ) and ({¬σ},¬σ) by aσ and a¬σ, respectively, and we will refer to a¬σ as the

negation of aσ (and vice versa). Also, we use the predicates A(a), R(a), Ab(a) to denote the

fact the argument a is accepted, rejected, or in abeyance, respectively.

For completeness we repeat here the definition of a strict preference relation.

Definition C.1. We say preference relation π over arguments is strict if the ordering of

arguments induced by it is strict and total, i.e., for every pair a and b of arguments,

a≫π b ⇐⇒ ¬
(
b≫π a

)
. (C.1)

Lemma C.2. A strict preference relation π satisfies the condition that for every pair of argu-

ments such that a defeats b and b defeats a, it is the case that a attacks b or b attacks a, i.e.,

at least one of a and b attacks the other.
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Proof. We prove by contradiction: Let us assume that a defeats b and b defeats a but neither

a attacks b nor b attacks a. By definition of the attack relation (Definition 4.15),

¬
(
a attacks b

)
=⇒ ¬

(
¬(b≫π a)

)
=⇒ b≫π a

and

¬
(
b attacks a

)
=⇒ ¬

(
¬(a≫π b)

)
=⇒ a≫π b.

However, this is a contradiction since, by assumption the preference ordering is strict, and

therefore it cannot be true that both conclusions a ≫π b and b ≫π a hold true at the same

time.

Lemma C.3. A strict preference π satisfies the condition that for every pair a and b of

arguments, it is not the case that both a attacks b and b attacks a, i.e., there can be no mutual

attack.

Proof. We prove by contradiction. Let us consider two mutually defeating arguments a and b.

By the definition of the attack relation, and because π is a total order, we have that

a attacks b =⇒ ¬(b≫π a) =⇒
(
a≫π b ∨ a ≡π b

)

and

b attacks b =⇒ ¬(a≫π b) =⇒
(
b≫π a ∨ b ≡π a

)

where a ≡π b means a is equally preferable to b. However, this latter case is not possible in a

strict preference relation. Therefore it must be the case that a ≫π b and b ≫π a, which is a

contradiction Eq.(C.1), again due to strictness.

We next prove that no argument is in abeyance if the preference relation over arguments

is strict. For that, we first prove that an argument in abeyance is always attacked by at least

another argument in abeyance.

Lemma 4.9. For every argument a it holds that

Ab(a) =⇒ ∃b ∈ attackers(a), Ab(b).
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Proof. By definition, an argument a is in abeyance if it is neither accepted, nor rejected.

Applying the definitions of acceptance and rejection and manipulating the boolean formulae

we obtain,

Ab(a) ⇐⇒ ¬A(a) ∧ ¬R(a)

⇐⇒ ¬
(
∀b ∈ attackers(a), R(b)

)
∧ ¬

(
∃b ∈ attackers(a), A(b))

)

⇐⇒
(
∃b ∈ attackers(a), ¬R(b)

)
∧

(
∀b ∈ attackers(a), ¬A(b))

)

⇐⇒
(
∃b ∈ attackers(a), (A(b) ∨Ab(b))

)
∧

(
∀b ∈ attackers(a), ¬A(b))

)

⇐⇒
(
∃b ∈ attackers(a), Ab(b)

)
∧

(
∀b ∈ attackers(a), ¬A(b))

)

=⇒ ∃b ∈ attackers(a), Ab(b).

Definition 4.21. An attack sequence is a sequence 〈a1, a2, . . . , an〉 of n arguments such that

for every i ∈ [2, n], ai attacks ai−1.

Lemma C.4. Let 〈A,R, π〉 be a PAF with a strict preference relation π. Then, no ar-

gument can appear more than once in any attack sequence, i.e., for every attack sequence

〈a1, a2, . . . , an〉 and every pair of integers i, j ∈ [1, n], i 6= j, ai 6= aj.

Proof. We first note that by definition of the attack relation, it must be the case that for any

two consecutive arguments ai, ai+1, it is true that ¬(ai ≫π ai+1). Since π is strict, this is

equivalent to ai+1 ≫π ai (c.f. Definition C.1). That is,

an ≫π an−1 ≫π . . .≫π a2 ≫π a1 (C.2)

We now assume, for contradiction, there exists an argument a⋆ that appears twice in the

attack sequence at indexes i⋆ and j⋆, i.e.,

∃ i⋆, j⋆ ∈ [1, n], i⋆ 6= j⋆, such that ai⋆ = aj⋆ = a⋆. (C.3)

Since no argument defeats itself, it cannot attack itself, and thus the smallest possible

attack sequence with a repeated argument must have at least length 3. From this fact and
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Eq. (C.2), there must exist an argument b 6= a⋆ such that a⋆ ≫π b and b ≫π a⋆, which

contradicts Eq. (C.1).

A corollary of this lemma is the following theorem.

Theorem 4.22. Every attack sequence 〈a1, a2, . . . , an〉 in a PAF 〈A,R, π〉 with strict π and

finite A is finite.

Proof. Follows directly from Lemma (C.4) and the fact that A is finite.

We now prove the main result of this section in the following theorem.

Theorem 4.20. Given an arbitrary triplet t = (X, Y | Z), and a PAF 〈A,R, π〉 with a strict

preference relation π and finite arguments set A, the top-down algorithm of Algorithm 13 run

for input t over 〈A,R, π〉 terminates.

Proof. In the tree traversed by the top-down algorithm, any path from the root to a leaf is

an attack sequence. Since for strict π and finite A each such sequence is finite, the algorithm

always terminates.

C.2 Validity of the Argumentative Independence Test

In this section we prove the validity of the argumentative independence test.

We start we proving that under the assumption of a strict preference relation no argument

is in abeyance.

Theorem 4.19. Let 〈A,R, π〉 be a PAF with a strict preference relation π. Then no argument

a ∈ A is in abeyance.

Proof. Let us assume, for contradiction, that there is an argument a in abeyance. From

Lemma (4.9), not only a has an attacker in abeyance, say argument b, but b also has an

attacker in abeyance, and so on. That is, we can construct an attack sequence starting at a

that contains only arguments in abeyance. Moreover, this sequence must be infinite, since the

lemma assures as we always has at least one attacker in abeyance. This is in direct contradiction

with Theorem 4.22.
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Corollary C.5. For every argument a in a PAF 〈A,R, π〉 with strict π,

A(a) ⇐⇒ ¬R(a).

We now prove a number of lemmas that hold only for the sub-class of propositional argu-

ments (arguments whose support only contains the head of that argument). We start with a

lemma that demonstrates that it cannot be the case that an attacker of a propositional argu-

ment aσ and an attacker of its negation a¬σ do not attack each other. The former must attack

the latter or vice versa.

Lemma C.6. Let 〈A,R, π〉 be a PAF with a strict preference relation π, aσ ∈ A be a propo-

sitional argument, and a¬σ its negation. For every pair of arguments b and c that attacks aσ

and a¬σ respectively, it follows that:

(b attacks c) ∨ (c attacks b).

Proof. Since aσ and a¬σ are propositional arguments, their support contains the head and only

the head, and thus any defeater (i.e., rebutter or undercutter) must have as head ¬σ and σ,

respectively, i.e., the head of b must be ¬σ and the head of c must be σ. Thus, b rebuts (and

thus defeats) c and vice versa. The lemma then follows directly from Lemma (C.2).

Lemma C.7. Let 〈A,R, π〉 be a PAF with a strict preference relation π, and aσ and a¬σ be a

propositional argument and its negation. Then,

R(aσ) =⇒ ¬R(a¬σ).

Proof. By assumption, R(aσ). We assume, for contradiction, that R(a¬σ). Therefore, by

definition of rejection, ∃b ∈ attackers(aσ) such that A(b), and ∃c ∈ attackers(a¬σ) such

that A(c). Also, by Lemma C.6, (i) b attacks c, or (ii) c attacks b. In either case, an

accepted argument is attacking an accepted argument, which contradicts the definition of

acceptance.

Lemma C.8. Given a PAF 〈A,R, π〉 with a strict preference relation π, every propositional

argument aσ ∈ A satisfies

A(aσ) =⇒ ¬A(a¬σ)
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Proof. We prove by contradiction. Let us assume that both aσ and a¬σ are accepted. Since

aσ and a¬σ are propositional arguments, they defeat each other. Then, by Lemma C.2 either

aσ attacks a¬σ or vice versa. In both cases an accepted argument has an accepted attacker,

which is a contradiction.

We now prove Theorem 4.18 introduced in Section 4.4.

Theorem 4.18. Given a PAF 〈A,R, π〉 with a strict preference relation π, every propositional

argument aσ ∈ A and its negation a¬σ satisfy

A(aσ) ⇐⇒ R(a¬σ).

Proof. The ( =⇒ ) direction follows from Theorem 4.19 and Lemma (C.8). The (⇐=) direction

follows from Theorem 4.19 and Lemma (C.7).

In Section 4.4 we defined the following semantics for deciding on the dependence or inde-

pendence of an input triplet (X, Y | Z):

({(X 6⊥⊥Y | Z)}, (X 6⊥⊥Y | Z)) is accepted ⇐⇒ (X 6⊥⊥Y | Z) is accepted =⇒ (X 6⊥⊥Y | Z)

({(X⊥⊥Y | Z)}, (X⊥⊥Y | Z)) is accepted ⇐⇒ (X⊥⊥Y | Z) is accepted =⇒ (X⊥⊥Y | Z)(C.4)

where acceptance is defined over the independence-based PAF defined in Section 4.3.3.

For this argumentative test of independence to be valid, its decision must be non-ambiguous,

i.e., it must decide either independence or dependence, but not both or neither. For that,

exactly one of the antecedents of the above implications must be true. Formally:

Theorem 4.17. For any input triplet σ = (X, Y | Z), the argumentative independence test

defined by Eqs. (C.4) produces a non-ambiguous decision, i.e., it decides that σ evaluates to

either independence or dependence, but not both or neither.

Proof. Let us denote (X⊥⊥Y | Z) by σt and (X 6⊥⊥Y | Z) by σf. It suffices to prove that exactly

one of the corresponding propositional arguments aσt
and aσf

is accepted in the corresponding

independence-based PAF. Since any independence-based PAF is strict (c.f. Lemma 4.16 in

Section 4.3.3), Theorems 4.18 and 4.19 hold. From Theorem 4.19 we know that neither of the
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propositional arguments is in abeyance. Thus, since aσt
corresponds to the negation of aσf

it

follows from Theorem 4.18 that exactly one of them is accepted.



157

BIBLIOGRAPHY

Abbeel, P., Koller, D., and Ng, A. Y. (2006). Learning factor graphs in polynomial time and

sample complexity. Journal of Machine Learning Research, 7:1743–1788.

Agresti, A. (2002). Categorical Data Analysis. Wiley, 2nd edition.

Amgoud, L. and Cayrol, C. (2002). A reasoning model based on the production of acceptable

arguments. Annals of Mathematics and Artificial Intelligence, 34:197–215.

Andrieu, C., de Freitas, N., Doucet, A., and Jordan, M. (2003). An introduction to MCMC

for machine learning. Machine Learning, 50:5–43.

Anguelov, D., Taskar, B., Chatalbashev, V., Koller, D., Gupta, D., Heitz, G., and Ng, A.

(2005). Discriminative learning of Markov random fields for segmentation of 3D range data.

Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR).

Barahona, F. (1982). On the computational complexity of ising spin glass models. Journal of

Physics A: Mathematical and General, 15(10):3241–3253.

Besag, J. (1974). Spacial interaction and the statistical analysis of lattice systems. Journal of

the Royal Statistical Society, Series B.

Besag, J., York, J., and Mollie, A. (1991). Bayesian image restoration with two applications

in spatial statistics. Annals of the Institute of Statistical Mathematics, 43:1–59.

Bromberg, F. and Margaritis, D. (2007). Efficient and robust independence-based Markov

network structure discovery. In Proceedings of The Twentieth International Joint Conference

on Artificial Intelligence (IJCAI).



158

Bromberg, F., Margaritis, D., and Honavar, V. (2006). Efficient Markov network structure

discovery using independence tests. In SIAM International Conference on Data Mining.

Bromberg, F., Margaritis, D., and Honavar, V. (2007). Efficient Markov network structure

discovery using independence tests. Submitted to Journal of Machine Learning Research.

Buntine, W. L. (1994). Operations for learning with graphical models. Journal of Artificial

Intelligence Research, 2:159–225.

Butz, C. J. (2000). The Relational Database Theory of Bayesian Networks. PhD dissertation,

University of Regina, Saskatchewan, Canada.

Chow, C. and Liu, C. (1968). Approximating discrete probability distributions with dependence

trees. IEEE Transactions on Information Theory, 14(3):462 – 467.

Cochran, W. G. (1954). Some methods of strengthening the common χ2 tests. Biometrics,

10:417–451.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001). Introduction to Algorithms.

Mit Press, 2nd edition.

Dawid, A. P. (1979). Conditional independence in statistical theory. Journal of the Royal

Statistical Society, 41:1–31.

Della Pietra, S., Della Pietra, V., and Lafferty, J. (1997). Inducing features of random fields.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4):390–393.

D.J. Newman, S. Hettich, C. B. and Merz, C. (1998a). UCI repository of machine learning

databases. Irvine, CA: University of California, Department of Information and Computer

Science.

D.J. Newman, S. Hettich, C. B. and Merz, C. (1998b). UCI repository of machine learning

databases. University of California, Irvine, Dept. of Information and Com puter Science.



159

Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in non-

monotonic reasoning, logic programming and n-person games. Artificial Intelligence, 77:321–

357.

Friedman, N., Linial, M., Nachman, I., and Pe’er, D. (2000). Using Bayesian networks to

analyze expression data. Computational Biology, 7:601–620.

Gärdenforst, P. (1992). Belief Revision. Cambridge Computer Tracts. Cambridge University

Press, Cambridge.

Gärdenforst, P. and Rott, H. (1995). Belief revision. In Gabbay, D. M., Hogger, C. J. and

Robinson, J. A., editors, Handbook of Logic in Artificial Intelligence and Logic Programming,

volume 4. Clarendon Press, Oxford.

Geman, S. and Geman, D. (1984). Stochastic relaxation, gibbs distributions, and the bayesian

relation of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:721–

741.

Heckerman, D. (1995). A tutorial on learning Bayesian networks. Technical Report MSR-TR-

95-06, Microsoft Research.

Heckerman, D., Geiger, D., and Chickering, D. M. (1995). Learning Bayesian networks: The

combination of knowledge and statistical data. Machine Learning.

Hofmann, R. and Tresp, V. (1998). Nonlinear Markov networks for continuous variables. In

NIPS ’98, volume 10, pages 521–529.

Ide, J. and Cozman, F. G. (2002). Random generation of Bayesian networks. In Brazilian

Symposium on Artificial Intelligence, volume Brazil, Denver, Colorado.

Isard, M. (2003). Pampas: Real-valued graphical models for computer vision. In IEEE Con-

ference on Computer Vision and Pattern Recognition, volume 1, pages 613–620.

Isham, V. (1981). An introduction to spatial point processes and markov random fields. Intl.

Statist. Review, 49:21–43.



160

Jerrum, M. and Sinclair, A. (1993). Polynomoial-time approximation algorithms for the ising

model. SIAM Journal on Computing, 22:1087–1116.

Kearns, M. J. and Vazirani, U. V. (1994). An Introduction to Computational Learning Theory.

MIT Press, Cambridge, MA.

Kohlas, J. (2003). Probabilistic argumentation systems a new way to combine logic with

probability. Journal of Applied Logic, 1(3-4):225–253.

Koller, D. and Sahami, M. (1996). Toward optimal feature selection. In International Confer-

ence on Machine Learning, pages 284–292.

Lam, W. and Bacchus, F. (1994). Learning Bayesian belief networks: an approach based on

the MDL principle. Computational Intelligence, 10:269–293.

Lauritzen, S. L. (1982). Lectures in contingency tables. University of Aalborg Press, Aalborg,

Denmark, 2nd edition.

Loui, R. P. (1987). Defeat among arguments: a system of defeasible inference. Computational

Intelligence, 2:100–106.

Margaritis, D. (2005). Distribution-free learning of Bayesian network structure in continuous

domains. In National Conference on Artificial Intelligence (AAAI). AAAI Press.

Margaritis, D. and Thrun, S. (2000). Bayesian network induction via local neighborhoods. In

Solla, S., Leen, T., and Müller, K.-R., editors, Advances in Neural Information Processing

Systems 12, pages 505–511. MIT Press.

Martins, J. P. (1992). Belief revision. In Shapiro, S. C., editor, Encyclopedia of Artificial

Intelligence, pages 110–116. John Wiley & Sons, New York, second edition.

McCallum, A. (2003). Efficiently inducing feeatures of conditional random fields. Proceedings

of Uncertainty in Artificial Intelligence (UAI).

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-

ence. Morgan Kaufmann Publishers, Inc.



161

Pearl, J. (2000). Causality. Cambridge University Press.

Pearl, J. and Paz, A. (1985). Graphoids: A graph-based logic for reasoning about releveance

relations. Technical Report 850038 (R-53-L), Cognitive Systems Laboratory, University of

California.

Pearl, J. and Paz, A. (1987). Graphoids: A graph-based logic for reasoning about relevance

relations. Advances in Artificial Intelligence, II:357–363.

Pollock, J. L. (1992). How to reason defeasibly. Artificial Intelligence, 57:1–42.

Prakken, H. (1997). Logical Tools for Modelling Legal Argument. A Study of Defeasible Rea-

soning in Law. Kluwer Law and Philosophy Library, Dordrecht.

Prakken, H. and Vreeswijk, G. (2002). Logics for Defeasible Argumentation, volume 4 of

Handbook of Philosophical Logic. Kluwer Academic Publishers, Dordrecht, 2 edition.

Rebane, G. and Pearl, J. (1989). The recovery of causal poly-trees from statistical data. In

Kanal, L. N., Levitt, T. S., and Lemmer, J. F., editors, Uncertainty in Artificial Intelligence

3, pages 175–182, Amsterdam. North-Holland.

Saha, S. and Sen, S. (2004). A Bayes net approach to argumentation based negotiation. In

Proc. of the AAMAS-2004 workshop on Argumentation in Multi-Agent Systems (ArgMAS).

Shapiro, S. C. (1998). Belief revision and truth maintenance systems: An overview and a pro-

posal. Technical Report 98-10, Dept of Computer Science and Engineering, State University

of New York at Buffalo.

Shekhar, S., Zhang, P., Huang, Y., and Vatsavai, R. (2004). Trends in Spatial Data Mining,

chapter 19, pages 357–379. AAAI Press / The MIT Press.

Spirtes, P., Glymour, C., and Scheines, R. (2000). Causation, Prediction, and Search. Adaptive

Computation and Machine Learning Series. MIT Press, 2nd edition.

Spohn, W. (1980). Sotochastic independence, causal independence, and shieldability. Journal

of Philosophical Logic, 9:73–99.



162

Srebro, N. and Karger, D. (2001). Learning Markov networks: Maximum bounded tree-width

graphs. In ACM-SIAM Symposium on Discrete Algorithms.

Tong, S. and Koller, D. (2001). Active learning for structure in Bayesian networks. In IJCAI.

Vreeswijk, G. A. W. (2005). Argumentation in Bayesian belief networks. In Argumentation

in Multi-Agent Systems, volume 3366 of Lecture Notes in Computer Science, pages 111–129.

Springer Berlin / Heidelberg.


