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Abstract—IoT in Agriculture applications have evolved to solve
several relevant problems from producers. Here, we describe a
component of an IoT-enabled frost prediction system. We follow
current approaches for prediction that use machine learning algo-
rithms trained by past readings of temperature and humidity sen-
sors to predict future temperatures. However, contrary to current
approaches, we assume that the surrounding thermodynamical
conditions are informative for prediction. For that, a model was
developed for each location, including in its training information
of sensor readings of all other locations, autonomously selecting
the most relevant ones (algorithm dependent). We evaluated our
approach by training regression and classification models using
several machine learning algorithms, many already proposed in
the literature for the frost prediction problem, over data from
five meteorological stations spread along the Mendoza Province of
Argentina. Given the scarcity of frost events, data was augmented
using the Synthetic Minority Oversampling Technique (SMOTE).
The experimental results show that selecting the most relevant

neighbors and training the models with SMOTE reduces the
prediction errors of both regression predictors for all five loca-
tions, increases the performance of Random Forest classification
predictors for four locations while keeping it unchanged for the
remaining one, and produces inconclusive results for Logistic
regression predictor. These results demonstrate the main claim
of these work: that thermodynamic information of neighboring
locations can be informative for improving both regression and
classification predictions, but also are good enough to suggest that
the present approach is a valid and useful resource for decision
makers and producers.

Index Terms—machine learning, Bayesian networks, Random
Forest, SMOTE, precision agriculture, frost prediction

I. INTRODUCTION

In Mendoza, Argentina, one of the most relevant wine
production regions in Latin America [1], [2], frost events
resulted in a loss of 85% of the peach production during 2013,
and affected more than 35 thousand hectares of vineyards.
Furthermore, research work conducted by Karlsruhe Institute
of Technology (KIT) [3] warns that vineyards in Mendoza and
San Juan (Argentina) represent the highest risk regions in the
world for extreme weather and natural hazards, mainly due
to wide diurnal temperature variation with over 20 degrees
Celsius in winter as Gonzalez et al. describe on [4]. This
reality quantifies one of the aspects that a frost event can
generate, but the socio-economical consequences do hit not

only producers, but also transport, commerce and general
services, which take long recovery periods. Plants and fruits
suffer from frost events as a consequence of water icing inside
the internal tissues present in the trunk, branches, leaves,
flowers and fruits. However, water content and distribution is
different among them, generating different damage levels. The
most sensible sections are leaves and fruits. Leaves provide
photosynthesis surface, while fruits collect nutrients and water
from the plant. Individual damage levels can be assessed by
studying the effects of freezing those parts under controlled
conditions, but an integral plant view is necessary to measure
the economical loss at the end of the harvest period.

Frost events are difficult to predict given that they are a
localized phenomenon. Frost can be result in partial damage
in different areas of the same crop field, with the capacity
to destroy the entire production in a matter of hours: even if
the damage is not visible just after the event, the effects can
surface at the end of the season, both reducing the quantity
and quality of the harvest.

There are several countermeasures for frost events, which
include air heaters by burning gas, petrol or other fuels,
removing air using large fans distributed along the field or
turning on sprinklers. However, each of these countermeasures
are expensive each time they are used. As a consequence,
it is critical to predict frost events with the highest possible
accuracy, so as to initiate the countermeasure actions at the
right time, reducing the possibility of false negatives (a frost
event was not predicted and it happened) or false positives
(a frost event was predicted and did not happen). In the first
case, the production or part of it may be lost. In the second
case, the burned fuel will be useless. Both situations lead to
reduced yield or complete production loss.

Given the small amount of frost events during the year,
available data is scarce to build an accurate forecasting system,
which defines an unbalanced dataset problem. The more data
machine learning models have, the better they can improve
their accuracy. This is a relevant problem in regions where
the meteorological data is not continuous or it has a short
history. In these cases, there is a low amount of data to build
a predictive model with high accuracy and/or precision.

This work is part of an Internet of Things-based system
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aimed to predict frost events in Peach orchards, as described
on the work from Watteyne et al. [5]. This system is composed
of three stages. On the first stage, historical meteorological
data is gathered from a number of selected internet-enabled
weather stations. On the second stage, the data collected from
the weather stations is used to train a frost-prediction engine.
Finally, on the third stage, local field data is collected from
a network of IoT sensors and further inserted on the model
generated by the prediction engine to provide a frost forecast
output.

In this paper, we describe the second stage of the IoT frost
prediction system. Instead of using traditional formula-based
predictions which are general for wide regions, we propose to
use a different approach: We use machine learning algorithms
for regression based on Bayesian Networks and Random
Forest, and for classification based on Random Forest (RF),
Logistic regression and Binary Trees, all ran over a balanced
training set augmented with new samples produced using
the SMOTE (Synthetic Minority Oversampling Technique)[6]
technique. This technique increases the rate of frost detection
(sensitivity).

Traditional approaches provide analytical solutions which
rely on several calibration parameters from the field, providing
low prediction accuracy. Although Machine Learning was
the natural evolution line of the solution, existing solutions
from the literature did not provide enough accuracy for the
producers to make well-funded decisions. The novelty of
this paper is twofold: First, we provide IoT-based Machine
Learning models which combine data from nearby IoT-enabled
meteorological stations sharply improving frost prediction
performance, and second, the model provided is amenable
for integration into an IoT system within the field to provide
localized frost prediction, which greatly increases the value
for the producers, enabling them to take action and mitigate
frost events in a more efficient way.

We chose these machine learning algorithms because they
are widely used for decision support applications. Logistic
regression and Binary Trees were chosen for comparison
against recent competitors [7], whereas RF was chosen be-
cause it ensures no-overfitting and has demonstrated very
good performance in classification problems. But RF is like
a black-box model, which means that is difficult for end-
users to understand how the model makes decisions. In con-
trast, Bayesian networks provide a complete framework for
inference and decision making by modeling relationships of
cause-consequence between the variables. A nice property of
a Bayesian network is that it can be queried: We can ask for
the probability of an event given the current evidence (sensor
values). In real IoT applications, it could happen that a sensor
breaks or looses the connection with the gateway, forcing the
network to deal with the problem of processing results with
incomplete information to make decisions. Bayesian networks
are also one of the most commonly used methods to modeling
uncertainty.

We are interested in evaluating the possibility of building
good predictors only with temperature and relative humidity
variables. These sensors are very common in most of the
IoT platforms or data loggers used for environmental mea-

surements. There are situations where sensor networks cannot
have access to a gateway or central server; so we want to
know, not only if temperature and humidity values are enough
to get an accurate predictor, but also if the sensor’s neighbors
are informative (or not) for the prediction, as a first step to
prototype a in-network frost forecast.

Finally, we build a regression model to predict the minimum
temperature for the following day using historical information
from previous days including a set of variables such as
temperature and humidity from itself and from neighboring
sites. It is important to have an accurate prediction at least 24
hours ahead because of the many logistic issues farmers must
resolve to apply countermeasures against frost (gasoline stock
for heaters, permit of irrigation to feed sprinklers, temporal
employees schedule). The rest of the paper is organized as
follows: Section II locates this work within the IoT-based
Frost prediction system. In section III we discuss previous
works on daily minimum temperature (frost) prediction. We
introduce Bayesian networks in section IV-A, Random Forest
in IV-B and Logistic Regression in IV-C. In section V we
describe our scenario of interest and the datasets to be used
to train the models. Then, we explain our experimental setup
in VI, followed by the results section VII. Finally, we share
our findings and future work in section VIII

II. THE IOT FROST PREDICTION SYSTEM

The IoT Frost Prediction System, described on Figure 1, is
composed by three integrated stages:
• A group of internet-enabled weather data collection

devices composed by weather stations which are first
used to provide historical data to the prediction engine,
and second, to generate new data to continuously improve
the prediction model.

• A prediction engine based on the techniques and results
described in detail on this paper, which is trained using
the data gathered from the weather stations.

• A frost forecast module based on the model obtained
from the prediction engine. This module obtains the data
from an IoT-based sensor network different from the
weather stations. The IoT-based sensor network provides
first, intra-field data from strategically selected locations
as input data to the model, and second, is used to calibrate
temperatures on the field with those captured by remote
sensing devices.

III. RELATED WORK

Current frost detection methods can be classified from the
data processing they use to generate the forecast: empirical,
numerical simulation and machine learning.

A. Empirical Methods

Empirical methods are based on the use of algebraic for-
mulas derived from graphical statistical analysis of a number
of selected parameters. The result is the minimal expected
temperature, such as the work from Brunt et al. [8] which is
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Fig. 1: The IoT-based frost prediction system

applied in [9] and the work from Allen et al. [10]. A complete
review of classical frost prediction methods can be found in
Burgos et al. [11], where the common pattern among them
is the estimation of the minimal temperature during the night.
Furthermore, Burgos et al. highlight the work from Smith [12]
and Young [13], comparing the minimal prediction accuracy.
As a matter of fact, the United States National Weather Service
has thoroughly used Young’s equation with specific calibration
to local conditions and time of the year for frost forecasting.

The Allen method, created in 1957, is still recommended by
the Food and Agriculture Organization (FAO) from the United
Nations to predict frost events. This formula requires the dry
and wet bulb at 3PM of the current day as an estimation of
relative humidity and dew point, together with atmospheric
pressure and temperature.

All the former models must be adapted to local conditions
by calculating a number of constants that characterize each
geographical location. The result is the prediction of the
minimal temperature for the current night only. A number of
these formulas suffer restrictions since they are indicated only
for radiative (temperature-based) frost events.

B. Numerical simulation methods

Numerical simulations are widely used to predict weather
behavior. Prabha et al.[14] have shown the use of Weather
Research and Forecasting (WRF) models for the study of two
specific frost events in Georgia, U.S. The authors used the
Advanced Research WRF (AWR) model with a 1km resolution
scaling to the region of interest with a set of initial values,
land use characteristics, soil data, physical parametrization and
for a specific topography map resolution. The resulting model
obtains accuracies between 80% and 100% and a Root Mean
Square Error (RMSE) between 1.5 and 4 depending on the
use case.

Wen et al. [15] also base their study on WRF; however,
the authors integrate a number of weather observations from
the MODIS database as inputs, composed by multispectral
satellite images. Wen et al. highlight that the model improves
when they include local model observations. This model
predicts caloric balance flows, such as net radiation, latent
heat, sensible heat and soil heat flow.

Although this is a valuable modeling tool, numerical simu-
lations and empirical formulas require a number of measure-
ments and parameters which are not always available to the

producer, such as solar radiation and soil humidity at different
depths.

C. Machine learning methods

There have been several pioneering efforts to apply machine
learning techniques to frost prediction [16], [17], [9], [18].
However, newer approaches have taken advantage of the
evolution of machine learning techniques and massive data
processing facilities to obtain higher accuracy on their results.

Maqsood et al. [19], provides a 24-hour weather prediction
south of Saskatchewan, Canada, creating seasonal models. The
authors used Multi-Layered Perceptron Networks (MPLN),
Elman Recurrent Neural Networks (ERNN), Radial Basis
Function Networks (RBFN) and Hopfield Models (HFM), all
trained with temperature, relative humidity and wind speed
data.

Another example of applied machine learning to frost pre-
diction is the work from Ghielmi et al.[20]. In this work,
the authors build a minimal temperature prediction engine
in north Italy. The aim of this work is to predict spring
frost events, using temperature at dawn, relative humidity, soil
temperature and night duration from weather stations. Ghielmi
et al. considers input data from six sources to an MPLN and
compares the behavior with Brunt’s model and other authors.

Eccel et al. [9] has also studied minimal temperature pre-
diction on the Italian Alps using numerical models combined
with linear and multiple regression, artificial neural networks
(ANNs) and Random Forest. The most relevant finding from
this publication is the ability of the Random Forest method to
provide the most accurate frost event prediction.

Ovando et al. [21] and Verdes et al. [22], build a frost predic-
tion system based on temporal series of temperature-correlated
thermodynamic variables, such as dew point, relative humidity,
wind speed and direction, cloud surface among others using
neural networks.

Lee et al. [7] use logistic regression and decision trees to
estimate the minimal temperature from eight weather variables
for each station in South Korea, for frost events between 1973
and 2007, with the following results: average recall values
between 75% and 80% and false alarm rate of (in average)
between 22% and 28%.

We can observe that the currently proposed Machine Learn-
ing based methods for frost prediction concentrate on the use
of a single weather station to provide input to the model
without considering variables from other neighboring weather
stations. All the former proposals have used long periods of
captured data for training purposes, ranging from 8 to 30 years,
highlighting the local nature of the frost phenomena. It is also
noticeable from the literature that the most relevant parameters
found by these as inputs to the models are temperature and
relative humidity.

IV. MACHINE LEARNING METHODS

A. Bayesian networks

The work of Aguilera et al. [23] on Bayesian networks
(BN) for environmental modeling stresses the benefits of using
BN for inference, knowledge discovery and decision making
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applications. BN is a type of probabilistic graphical model,
whose set of random variables and conditional independences
among them can be represented as a directed acyclic graph
(DAG), whose set of nodes V = X1, X2, .., XM represent the
random variables, and each directed edge represents a direct,
i.e., non-mediated, probabilistic influence between the target
variable and the originating variable, referred to as parent.
This results in each random variable to be independent of
all its non-descendents given its parents; a property known
as the Markov property. If we denote by πXi

the set of
parents of variable Xi, the Markov property results in the
following factorization of the joint probability distribution
P (X1, ..., XM ): P (X1, ..., XM ) =

∏M
i=1 P (Xi|πXi

). This
factorization is the main advantage of BNs, as it can result in
practice in drastic dimensionality reductions, from M down
to the cardinality of the largest parents’ set.

BNs can be built autonomously using structure learning
algorithms (SLA) that elicitate both the network structure as
well as its numerical parameters, completely from input data.
In this work, we take the score-based approach for structure
learning, that as its name implies, assigns a score to each
candidate BN structure to evaluate how well it fits the data,
and then searches over the space of DAGs for a structure with
maximal score using an heuristic search algorithm. Typical
score measures are some variation of the lilkelihood, defined
as the probability of the (observed) data D given a Bayesian
network BN consisting of a DAG M and numerical parameters
θ, i.e., L(θ) = P (D|θ,M) = P (x1, x2, .., xm|θ). Greedy
search algorithms (such as hill-climbing or tabu search) are
a common choice for the search procedure, but almost any
kind of search procedure can be used.

We propose to model a state-based, Gaussian Bayesian
network which on one hand models both the local distributions
of the factorization as normal distributions linked by linear
constraints, and on the other represents the state of each
variable at discrete time intervals; resulting into a series of
time slices, with each indicating the value of each variable at
time t.

In our experiments, we considered different learning sce-
narios, including hill climbing (HC) [24] and Tabu Search
(Tabu) for the search procedure, both provided by R as in
packages [25], [26]; as well as maximum likelihood for fitting
the parameters of the Gaussian Bayesian network, using the
regression coefficients for each variable against its parents. As
scores, we considered:
• The multivariate Gaussian log-likelihood score (loglik-g),
• The corresponding Akaike Information Criterion score

(aic-g),
• The corresponding Bayesian Information Criterion score

(bic-g),
• A score equivalent Gaussian posterior density (bge)

B. Random Forest

Random Forest (RF) [27] is a machine learning method
that, same as BN, can be applied to both regression and
classification problems. The RF algorithm is a very well-
known ensemble learning method which involves the creation

of various decision trees models. Each tree is built as follows
[28]:

1) Build the training set for RF by sampling the training
cases at random with replacement from the original data.
About one-third of the cases are left out of the sample.
This oob (out-of-bag) data is used to get a running
unbiased estimate of the classification error as trees are
added to the forest. It is also used to get estimates of
variable importance.

2) If there are M input variables, a number m << M is
specified such that at each node, m variables are selected
at random out of the M and the best split on these m
is used to split the node (decide the parent’s node and
leaves). The value of m, also known as mtry, is held
constant during the forest growing.

3) the best split of one of the m variables is calculated
using the Gini importance criteria.

4) Each tree is grown until there are no more m variables
to add to the tree. The algorithm continuous until ntree
constant number of trees were created. No pruning is
performed.

The RF algorithm can be used for selecting the most
relevant features from the training dataset by evaluating the
Gini impurity criterion of the nodes (variables).

C. Logistic Regression

Binary logistic regression is a generalized linear model with
the Bernoulli distribution, which is a particular case of the
binomial distribution where n = 1. We define frost events as
a binary variable (Y = 0 for no frost occurrence and Y = 1
for frost event), so the logistic regression equation for frost
events probability p(xi) can be defined as:

logit[p(xi)] = exp(β0 + β′xi) (1)

where β′ is the coefficient corresponding to independent
variable xi ; i = 1..N is the number of variables, and β0
is the intercept of the linear term. The β′ and β0 parameters
can be calculated using maximum likelihood estimates. The
probability of frost events, Y = 1, is defined as:

P (Y = 1) =
exp(β0 + β′xi)

1 + exp(β0 + β′xi)
(2)

V. OUR DATASETS

We worked with data from Dirección de Agricultura y
Contingencias Climáticas (DACC) [29], from Mendoza, Ar-
gentina. DACC provided data from five meteorological stations
located in Mendoza province in Argentina as depicted on
Figure 2, which are listed below:

• Junı́n (33◦6′ 57.5′′ S,68◦29′ 4′′ W)
• Agua Amarga (33◦30′ 57.7′′ S,69◦12′ 27′′ W)
• La Llave (34◦38′ 51.7′′ S, 68◦00′ 57.6′′ W)
• Las Paredes (34◦31′ 35.7′′ S,68’◦25′ 42.8′′ W)
• Tunuyán (33◦33′ 48.8′′ S,69◦01′ 11.7′′ W)
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Fig. 2: Map of the DACC’s stations located in Mendoza,
Argentina.

Name Location Heigth (m)
Junı́n Junı́n 653
Agua Amarga Tunuyán 970
La Llave San Rafael 555
Las Paredes San Rafael 813
Tunuyán Tunuyán 869

For each location, , we have data from temperature and
relative humidity sensors spanning a period from 2001 until
2016. Our dataset uses this information to record, for each
day, the average, minimum and maximum of both temperature
and humidity, resulting in six variables per location, per day
sampled.

Our datasets reflect the type of prediction intended, where
the learned model should accurately predict the minimum
temperature for the next day using information from previous
days. It is therefore built based on lagged variables, with a lag
of T = 1, 2, 3, 4 previous days. This resulted in each labeled
data point containing T times 6 variables corresponding to
the T previous days, plus, for the training dataset only, the
label variable reporting the next day minimum temperature
at the location of the station. For classification models, we
discretized the label variable like frost or not frost, defining
a frost event as below zero degree Celsius, and consider the
frost event as the positive class.

As explained before, we considered two cases. One in
which we take only the variables of the station, referred to
as local or config-local, and one in which we considered
variables from all other stations as well, referred to as all
or config-all. To illustrate, we present some example rows
for different cases of the training dataset. In the examples,
we denote by xti,j , the value for the j-th variable, with
j = 1, . . . , 6, of the i-th station, with i = 1, . . . , 5, of t
days in the past. For the case of station i = 2, T = 1
and local, an example row of the training dataset would
contain data for [x12,1, x

1
2,2, x

1
2,3, x

1
2,4, x

1
2,5, x

1
2,6, Y2] where Yi

is the minimum temperature for the next day at station i.
For the case of station i = 2, T = 1 and config-all, an
example row of the training dataset would contain data for
[x11,1, x

1
1,2, ..., x

1
1,6, x

1
2,1, x

1
2,2, . . . , x

1
2,6, Y2]. Finally, for the

case of i = 2, T = 2 and config-local, the example row would
contain: [x12,1, x

1
2,2, ..., x

1
2,6, x

2
2,1, x

2
2,2, ..., x

2
2,6, Y2].

VI. EXPERIMENT SETUP

We conducted several experiments to validate our central
claim that measurements in nearby locations can help im-
prove prediction of frost events. For that, we compare our
approach over several classification and regression algorithms.
We considered regression models that predict the minimum
temperature for the next day, namely Bayesian network (BN)
and Random Forest (RF). We train the BN models using HC
and Tabu from bnlearn R package [26], [25] with their default
values for all the selected scores. To contrast our approach
with previous works [7], we train classification models using
binary trees (recursive partitioning (Rpart) [30][31] and C5.0
without boosting [32]), logistic regression and RF [33]. C5.0
incorporates boosting and a feature selection approach (win-
nowing). For the purpose to adapt to a binary tree similar to
the one presented in [7], we didn’t train C5.0 with boosting,
and for Rpart we chose an entropy split.

In order to train the regression and classification models, we
split the dataset in train and test sets. The train set is used by
the algorithms to fit the model parameters to the data, while
the test set is used to validate the performance of the models
under unseen conditions. In our experiments, we performed a
68% split in the first part of the dataset for the training phase
and the rest for testing purposes.

To tackle the scarcity of frost events, we evaluated not only
the original datasets, but also datasets with an augmented
number of frost events, by using the SMOTE re-sampling
methodology [34], [35]. SMOTE involves a combination of
minority class over-sampling, balanced by a majority class
under-sampling, resulting in a dataset of the same number of
data points. In our experiments we chose a three-time over-
sampling of the minority class, that triples the number of frost
events.

The method used for selection of the optimal values of
user-given parameters in the training phase is cross-validation
on a rolling basis, best known as time-series cross-validation
[36]. The range of values for each parameter used for tuning
are listed on Table VI. This method consists in K training
and testing events over the same dataset, reported through the
average of the performance measurement over all cases. The k-
th case, k = 1, . . . ,K, consists in a training range over the first
((k−1)×horizon)+windowSize data points of the original
dataset, and testing over the following horizon data points.
Note that the tested data points of one fold are then included
as part of the next training dataset fold. In our experiments
we used windowSize = 300, and horizon = 100. We
implemented this procedure using the caret R package [35].

VII. RESULTS

The experimental results consist on a number of different
performance measures computed over the test set, which
differ for classification and regression models. For regression
models, we report the MAE (Mean Absolute Error) and
RMSE (Root Mean Square Error). If Yreal denotes the actual
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Algorithm Parameter Values
Random forest mtry* 2,4,6,8,..60
Random forest ntree 500
Bayesian networks SLA tabu, hc
Bayesian networks score loglik-g, aic-g, bic-g, bge
C5.0 trials 1
C5.0 model tree
C5.0 winnow true,false
Rpart complexity parameter 0.1,0.2,0.3,0.4,0.5
Rpart split entropy

(*) mtry maximum value depends on the number of variables in the dataset
for each experiment. For example, in local config with T = 1 the dataset
has only 6 variables, so mtry values to try would be 2,4 and 6.

TABLE I: Tuning parameters for classification and regression
models.

Reference

Prediction True Positive (TP) False Positive (FP)
False Negative (FN) True Negative (TN)

TABLE II: Confusion matrix for a binary classifier

minimum temperature as reported in the test set, and Ypred
denotes the predicted value of the model, the metrics are
defined as follows:

• RMSE =
√

1
n

∑
(Ypred − Yreal)2

• MAE = 1
n

∑n
t=1 |Ypred − Yreal|

For classification models, all performance measurements
considered are computed over a data structure that summa-
rizes prediction quality of classification problems called the
confusion matrix. Table VII shows a schema of a confusion
matrix for a binary classifier. Based only on the four quantities
defined, namely, true and false positives, denoted TP and FP
respectively, and true and false negatives, denoted TN and
FN respectively; we can compute the following metrics:
• Sensitivity: TP

TP+FN , also known as true positive rate,
probability of detection or recall. Higher values of sen-
sitivity indicate that it is a good predictor of the positive
class.

• Precision: TP
TP+FP reflects how accurately is the predictor

for predicting the positive class. The higher is this value
the lower the chances of false positives.

• F1-score: F1 = 2·precision·sensitivity
precision+sensitivity , which represents a

balance between precision and sensitivity.
Figures 3, 4, 5, 6, and 7 synthesize all the results we

obtained from the experiments.
Figure 4 shows results for MAE (top) and RMSE (bottom),

for the two regression models: Bayesian networks (left) and
Random Forest (right). As shown, the config-all case (labeled
all, and shown in the lower box) presents the best performance
in all cases, with a lower value for both errors, both algorithms,
and all locations, proving the benefit of adding information of
neighboring stations. These figures also show that for both
config-all and local configurations, the MAE and RMSE are
below 3◦C, a small value when compared to the large thermal
variability in Mendoza during winter days that can reach up
to 20◦C [4].

Figure 3 shows a comparison between the F1-score for all
four classification algorithms. As observed, RF and Logistic
regression outperforms both C5.0 and Rpart in all cases. Thus,
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to simplify the following analysis, we decided to filter them
out.

A known effect of SMOTE on the performance of classifi-
cation algorithms is to increase the sensitivity while reducing
precision, a pattern followed for our data, as shown by Figures
5 and 6 for algorithms RF and Logistic regression, respec-
tively, where SMOTE results (top box) are large for sensitivity
(left column) for all five locations, while for precision (right
column) are clearly lower.

F1-score results for logistic regression and RF models, are
shown in Figure 7, showing a comparison between cases
config-all (top box) and local (bottom box). We can see
that the behavior between the stations is different (Figures
3, 7), due the fact they are apart from each other in different
micro-climate zones: Agua Amarga and Tunuyán are in Uco
Valley, Junı́n in East Valley, Las Paredes and La Llave are in
South Valley. We can observe that Tunuyán station presents
less variability in its F1 results. Therefore, adding information
from neighbors does not help to improve F1 metric to all the
stations. For RF, config-all helps to Tunuyan, Las Paredes,
Junı́n, and Agua Amarga to increase the average of the F1.
Agua Amarga improves F1 score with config-all for both

models: RF and Logistic regression, and RF has a better
performance. In the case of Logistic Regression, Junı́n and

Tunuyán slightly increase the average F1 by using config-
local. Despite that we show that our results regarding recall
are similar or better than the previous approach from Lee et
al. [7], where the recall value is between 0.7 and 0.8, there
are two main differences between both studies. First, the work
from Lee et al. uses a longer period: 40 years of weather data
for training; and second, both scenarios are geographically
different. Finally, we observe that farmers would prefer a
higher recall value in presence of lower precision, because
the cost of crop losses may be higher than the price of
frost protection even including false positives. In this case,
a combination of config-all and SMOTE could help to build
a better fitted forecast engine.

VIII. CONCLUSION AND FUTURE WORK

In this paper we have created an forecasting engine which is
part of an IoT-enabled frost prediction system, which gathers
environmental data to predict frost events using machine learn-
ing techniques. We have shown that our prediction capability
outperforms current proposals in terms of sensitivity, precision
and F1.

In particular, the application of SMOTE during the training
phase has shown an improved performance in terms of recall
in both RF and Logistic Regression models.

We have also observed that, in specific relevant cases, the in-
clusion of neighbor information helps to improve the precision
or recall of the forecasted classification model. On the other
hand, regression models have less error by including neighbor
information. In these cases, including the spatial relationships,
there is a resulting improvement in model performance. We
hope to contrast this approach with other scenarios in the
future.
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