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Abstract

In this paper we introduce a novel algorithm for
the induction of the Markov network structure of
a domain from the outcome of conditional inde-
pendence tests on data. Such algorithms work by
successively restricting the set of possible struc-
tures until there is only a single structure consistent
with the conditional independence tests executed.
Existing independence-based algorithms have well-
known shortcomings, such as rigidly ordering the
sequence of tests they perform, resulting in poten-
tial inefficiencies in the number of tests required,
and committing fully to the test outcomes, result-
ing in lack of robustness in case of unreliable tests.
We address both problems through a Bayesian par-
ticle filtering approach, which uses a population of
Markov network structures to maintain the poste-
rior probability distribution over them, given the
outcomes of the tests performed. Instead of a fixed
ordering, our approach greedily selects, at each
step, the optimally informative from a pool of can-
didate tests according to information gain. In ad-
dition, it maintains multiple candidate structures
weighed by posterior probability, which makes it
more robust to errors in the test outcomes. The re-
sult is an approximate algorithm (due to the use of
particle filtering) that is useful in domains where
independence tests are uncertain (such as applica-
tions where little data is available) or expensive
(such as cases of very large data sets and/or dis-
tributed data).

1 Introduction

In this paper we focus on the task of learning the structure
of Markov networks (MNs), a subclass of graphical mod-
els, from data in discrete domains. (Other graphical models
include Bayesian networks, represented by directed graphs.)
MNs consist of two parts: an undirected graph (the model
structure), and a set of parameters. An example Markov net-
work is shown in Fig. 1. Learning such models from data
consists of two interdependent problems: learning the struc-
ture of the network, and, given the learned structure, learning
the parameters. In this work we focus on structure learning of
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Figure 1: Example Markov network. The nodes represent variables
in the domain V = {0, 1, 2, 3, 4, 5, 6, 7}.

the MN from data, which is frequently the most challenging
of the two tasks.

The structure of a MN encodes graphically a set of con-
ditional independencies among the variables in the domain.
These independencies are a valuable source of information in
a number of fields that rely more on qualitative than quanti-
tative models (e.g., social sciences). Markov networks have
also been used in the physics and computer vision commu-
nities [Geman and Geman, 1984; Besag et al., 1991], where
they have been historically called Markov random fields. Re-
cently there has been interest in their use for spatial data min-
ing, which has applications in geography, agriculture, clima-
tology, ecology and others [Shekhar et al., 2004].

2 Motivation and Related Work

There exist two broad classes of algorithms for learning
the structure of graphical models: score-based [Heckerman,
1995] and independence-based or constraint-based [Spirtes
et al., 2000]. Score-based approaches conduct a search in
the space of legal structures (of size super-exponential in the
number of variables in the domain) in an attempt to discover a
model structure of maximum score. Independence-based al-
gorithms rely on the fact that a graphical model implies that a
set of independencies exist in the distribution of the domain,
and therefore in the data set provided as input to the algorithm
(under assumptions, see below); they work by conducting a
set of statistical conditional independence tests on data, suc-
cessively restricting the number of possible structures consis-
tent with the results of those tests to a singleton (if possible),
and inferring that structure as the only possible one.

In this work we present an algorithm that belongs to the
latter category, that presents advantages in domains where
independence tests are (a) uncertain or (b) expensive. The
first case may occur in applications where data sets are small
relative to the number of variables in the domain. Case (b)
occurs in applications involving very large data sets (number
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of data points) and/or domains where the data are heteroge-
neously distributed i.e., where columns of the data set (at-
tributes) may be located in geographically distinct locations
(e.g., sensor networks, weather modeling and prediction, traf-
fic monitoring etc). In such settings conducting a conditional
independence test may be expensive, involving transfers of
large amounts of data over a possibly slow network, so it is
important to minimize the number of tests done.

Interesting work in the area of structure learning of undi-
rected graphical models includes learning decomposable
(also called chordal) MNs [Srebro and Karger, 2001] or more
general (non-decomposable) MNs [Hofmann and Tresp,
1998], which is a score-based approach. An independence-
based approach to MN structure learning is the GSIMN al-
gorithm [Bromberg et al., 2006], which uses Pearl’s infer-
ence axioms [Pearl, 1988] to infer the result of certain inde-
pendence tests without actually performing them. However,
GSIMN has two disadvantages: (i) potential inefficiencies
with regard to the number of tests required to learn the struc-
ture due to the relatively rigid (predefined) order in which
tests are performed, and (ii) potential instability due to cas-
cading effects of errors in the test results. Instead, the present
paper takes a Bayesian approach that maintains the posterior
probability distribution over the space of structures given the
tests performed so far. We avoid the inefficiencies of previous
approaches by greedily selecting, at each step, the optimally
informative tests according to information gain (decrease in
entropy of the posterior distribution). As such the approach
can be seen as an instance of active learning [Tong and Koller,
2001]. In addition, our approach is more robust to errors in
the test outcomes by making use of the probability of inde-
pendence instead of making definite decisions (corresponding
to probability 0 or 1). In this way an error in an independence
test does not permanently cause the correct structure to be
excluded but only lowers its posterior probability.

The rest of the paper is organized as follows: In the next
section we present our notation, followed by a description of
our approach in detail. Following that, we present experimen-
tal results and conclude with a summary of our approach.

3 Notation and Preliminaries

A Markov network of a domain V is an undirected model
that can be used to represent the set of conditional indepen-
dencies in the domain. The application domain is a set of
random variables of size n = |V|. In this work we use cap-
ital letters A, B, . . . to denote domain random variables and
bold letters for sets of variables (e.g., S). The space of all
structures (given V) is denoted by X and the space of all con-
ditional independence (CI) tests by Y . Conditional indepen-
dence of A and B given S is denoted by (A⊥⊥B | S). The
set of conditional independencies implied by the structure of
a MN are at least the ones that are implied by vertex sepa-
ration i.e., (A⊥⊥B | S) if A and B are separated in the MN
graph after removing all nodes in S (and all edges adjacent
to them). For example, in Fig. 1, (0⊥⊥4 | {2, 7}). If exactly
those independencies hold in the actual probability distribu-
tion of the domain, we say that the domain and the graph are
faithful to one another. Faithfulness excludes certain distri-
butions that are unlikely to happen in practice, and is needed
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Figure 2: Generative model of domain. Left: Correct. Right:
Assumed.

for proofs of correctness. It is therefore a common assump-
tion of independence-based algorithms for graphical model
discovery. We assume faithfulness in the present work.

As described later in our main algorithm, we maintain pop-
ulations of structures at each time step t; slightly abusing our
notation we denote these populations by Xt. We denote a se-
quence of t tests Y1, . . . , Yt by Y1:t and a sequence of value
assignments to these tests (independence or dependence, cor-
responding to true and false respectively) by y1:t.

3.1 Generative Model over Structures and Tests

For an input data set D, our approach uses the posterior prob-
ability over structures Pr(X | D), X ∈ X to learn the struc-
ture of the underlying model as explained in more detail in the
next section. For that probability to be calculated in a princi-
pled way, we need a generative model that involves variables
X, Y1, Y2, . . . , Yt and D that reflects any independence con-
straints among these variables. Our only constraint here is
the assumption that the tests are the sufficient statistics for the
structure i.e., there is no information in the data set D beyond
the value of the tests as far as structure is concerned. This
stems from the fact that the structure X faithfully encodes
the independencies in the domain. Note that this assump-
tion is not particular to our approach, but is implicit in any
independence-based approach. Our generative model only
formalizes it and makes it explicit.

The generative model that encodes this constraint is shown
in Fig. 2 (left), where X and D are d-separated by the tests
Y1, . . . , Yt. However, the posterior over structures Pr(X |
D) cannot be computed from this model because, accord-
ing to the model, Pr(X | D) =

∑
y1:t

Pr(X | Y1:t =

y1:t,D) Pr(Y1:t = y1:t | D), which requires the computa-
tion of Pr(Y1:t = y1:t | D), currently an unsolved problem.
We therefore assume the model shown in Fig. 2 (right), which
contains multiple data sets D1, . . . ,Dt (abbreviated D1:t). In
this model, it can be shown that the tests Y1 through Yt are
independent given data sets D1:t. This allows the model to be

solved because now Pr(Y1:t = y1:t | D) =
∏t

i=1
Pr(Yi =

yi | Di), where the factors Pr(Yi = yi | Di) can be com-
puted by known procedures such as the discrete version of
the Bayesian test of [Margaritis, 2005]. In practice we do not
have more than one data set, and therefore we use the same
data set for all tests i.e., Di = Dj , i �= j. Thus, the model
depicted on Fig. 2 (right) is used only as an approximation to
overcome the lack of an exact solution described above. As
we will show in the experiments section, this approximation
works well in both artificial and real world data sets.

Under this modified model, the posterior probability over
structures must now be computed given data sets D1:t, i.e.,
Pr(X | D1:t), which we abbreviate as Prt(X). In our cal-
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culations below we also use the conditional entropy H(X |
Y1:t,D1:t) of X given the set of tests Y1:t and the data sets
D1:t, similarly abbreviated as Ht(X |Y1:t).

Finally, the other parameters of the model are as follows:
the prior Pr(X) is assumed uniform, and each test Yi is com-
pletely determined given X = x i.e., Pr(Yi = true | X =
x) ∈ {0, 1} (this is a direct consequence of the Faithfulness
assumption).

4 Approach

To learn the MN structure of a domain from data, we em-
ploy a Bayesian approach, calculating the posterior proba-
bility Prt(x) of a structure x ∈ X given data sets D1:t. The
problem of learning a structure in this framework can be sum-
marized in the following two steps: (i) finding a sequence of
tests Y1:t of minimum cost such that H(X | Y1:t,D1:t) = 0,
and (ii) finding the (unique) structure x� such that Pr(X =
x� | D1:t) = 1. (This is always possible due to our assump-
tion of Faithfulness, which guarantees the existence of a sin-
gle structure consistent with the results of all possible tests in
the domain.)

In practice, the above procedure presents considerable dif-
ficulties because:

• The space of structures X is super-exponential: |X | =

2(n
2). Thus, the exact computation of the entropy Ht(X |

Y1:t), a sum over all x ∈ X , is intractable.

• The space of candidate tests Y is also at least exponential

in size: there are
(
n

2

)(
n−2

m

)
tests (A⊥⊥B | S) with |S| =

m, and m ranges from 0 to n− 2. Moreover, for a given

number of tests t, there exist
(
|Y|
t

)
possible candidate

test sequences Y1:t to consider.

We address the first issue using a particle filtering approach
(discussed in section 4.2). At each step t, we maintain a pop-
ulation of candidate MN structures Xt for the purpose of rep-
resenting the posterior probability distribution over structures
given the outcomes of tests performed so far. In this way, all
required quantities, such as posterior probability Prt(x) or
conditional entropy Ht(X | Y1:t), can be estimated by sim-
ple averaging over the particle population Xt. The second
issue (choosing the next test to perform) is addressed using a
greedy approach. At each step of our algorithm, we choose
as the next test to perform the member of Y that minimizes
the expected entropy, penalized by a factor proportional to
its cost. Since Y is exponential in size, the minimization is
performed through a heuristic search approach.

The next section explains our algorithm in detail.

4.1 The PFMN Algorithm

Our algorithm is called PFMN (Particle Filter Markov Net-
work structure learner), and is shown in Algorithm 1. At each
time step t, the algorithm maintains a set Xt containing N
structure particles.

Initially, each structure in X0 is generated by randomly and
uniformly selecting a number m of edges from 0 to

(
n
2

)
, and

then randomly and uniformly selecting the m edges by pick-
ing the first m pairs in a random permutation of all possible
pairs. This ensures that all edge-set sizes have equal proba-
bility of being represented in X0.

Algorithm 1 Particle Filter Markov Network (PFMN) algo-
rithm. x = PFMN (N, M, q(X� | X)).

1: X0 ←− sample N independent structure particles uniformly
distributed among all edge-set sizes (see text).

2: t ←− 0
3: loop
4: Yt+1 ←− arg max

(A,B)
arg max

S
scoret(A,B | S)

5: Y1:t+1 ←− Y1:t ∪ {Yt+1}
6: pT ←− Pr(Dt+1 | Yt+1 = t) /* Perform test on data. */
7: pF ←− Pr(Dt+1 | Yt+1 = f) /* Perform test on data. */
8: Update Prt+1(X) from pT and pF using Eq. (5).
9: Xt+1 ←− PF (Xt, M, Prt+1(X), q(X� | X))

10: if Ht+1(X | Y1:t+1) = 0 then
11: return unique structure x such that Prt(x) = 1
12: t ←− t + 1

At each time t during the main loop of the algorithm (lines
3–12), the test Yt+1 = (A�, B� | S

�) ∈ Y that optimizes
a score function is selected (the score function is described
below). Since for each pair of variables (A, B) ∈ V × V the
space of possible conditioning sets is exponential (equaling
the power set of V − {A, B}), this optimization is performed
by heuristic search; in particular, first-choice hill-climbing is
used. During this procedure, the neighbors of a current point
S are all possible additions to S of a non-member, all possible
removals from S of a member, and all possible replacements
of a member of S by a non-member. The score of test Yt+1 is
defined as follows:

scoret(Yt+1) = −
Ht(X | Y1:t, Yt+1)

W (Yt+1)
(1)

where the factor W (Y ) denotes the cost of Y , which we take
to be proportional to the number of variables involved in the
test. This factor is used to discourage expensive tests. Ht(X |
Y1:t, Yt+1) is the entropy given the (not yet performed) test
Yt+1, and is equal to:

Ht(X | Y1:t, Yt+1) = Ht(X | Y1:t) − IG t(Yt+1). (2)

The derivation of Eq. (2) makes use of our generative model
(Fig. 2) and is simple and omitted due to lack of space. The
term IG t(Yt+1) denotes the information gain of candidate
test Yt+1 given all information at time t, i.e., data sets D1:t,
and is equal to:

IGt(Yt+1) = −
∑

x∈X

Prt(x) log Prt(y
x
t+1 | yx

1:t) (3)

where by yx
1:t we denote the value of tests Y1:t in structure x

(each test is either true or false). The above expression
follows from Bayes’ rule and our generative model which im-
plies that given a MN structure x, any test Y is completely
determined using vertex separation (assuming Faithfulness).
This implies that Prt(Y1:t = y1:t | x) = δ(y1:t, y

x
1:t), where

δ(a, b) is the Kronecker delta function that equals 1 iff a is
equal to b. We say that structure x is consistent with assign-
ment y1:t iff yx

1:t = y1:t. The quantity Prt(y
x
t+1 | yx

1:t) of
Eq. (3) can be calculated as

Prt(y
x
t+1 | yx

1:t) =

∑
x′∈{yx

t+1,yx
1:t}

Prt(x
′)

∑
x′∈{yx

1:t}
Prt(x′)

(4)

where by {y1:t} we denote the equivalence class of structures
x′ ∈ X that are consistent with assignment y1:t. Using this
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notation, {yx
1:t} represents the set of all structures that imply

the same values for the CI tests Y1:t as structure x does. If x
and x′ are in the same class {y1:t}, we say they are equivalent
w.r.t. tests Y1:t and we denote this by x ∼t x′.

Eq. (4) has an interesting and intuitive interpretation: at
each time t, the posterior probability of a test Y being true
(false), given some assignment y1:t of tests Y1:t, equals the
total posterior probability mass of the structures in the equiv-
alence class {y1:t} that are consistent with Y = true

(Y = false), normalized by the posterior probability mass
of the class {y1:t}.

To compute the information gain in Eq. (2) we also need
the posterior Prt(x) = Pr(x | D1:t) of a structure x ∈ X for
Eq. (3). As explained in section 3.1, we use the Bayesian
test described in [Margaritis, 2005]). This test calculates
and compares the likelihoods of two competing multino-
mial models (with different numbers of parameters), namely
Pr(Dt | Yt = yt), yt ∈ {true,false}. Since according
to our generative model Pr(Di | y1:t, x) = Pr(Di | yi) and
Pr(y1:t | x) = δ(yx

1:t, y1:t), by Bayes’ law we have:

Pr(x | D1:t) ∝ Pr(x) Pr(D1:t | x) = Pr(x)

t∏

i=1

Pr(Di | yx
i ).

(5)
The constant of proportionality is independent of x and thus
can be calculated by a sum over all structures in X . As ex-
plained above, this, like all equations in this section that in-
volve summations over the space of structures X , is approx-
imated by a summation over Xt, the population of particles
from the previous iteration of the algorithm.

This completes the description of test score function of
Eq. (1). Returning to our description of Alg. 1, lines 6 and 7
calculate the data likelihoods of the optimal test Yt+1, which
are used to update the posterior over structures and obtain
Prt+1(X) using Eq. (5). With this updated distribution, the
new set of particles Xt+1 is computed in line 9 using the par-
ticle filter algorithm, described in the next section.

The PFMN algorithm terminates when the entropy Ht(X |
Y1:t) (estimated over the population Xt) becomes 0, return-
ing the unique structure particle whose posterior probability
equals 1.

4.2 Particle filter for structures

A particle filter [Andrieu et al., 2003] is a sequential Markov-
Chain Monte-Carlo (MCMC) method that uses a set of sam-
ples, called particles, to represent a probability distribution
that may change after each observation in a sequence of ob-
servations. At each step, an observation is performed and a
new set of particles is obtained from the set of particles at the
previous step. The new set represent the new (posterior) dis-
tribution given the sequence of observations so far. One of
the advantages of this sequential approach is the often drastic
reduction of the cost of sampling from the new distribution,
relative to alternative (non-sequential) sampling approaches.
In our case, the domain is X and particles represent struc-
tures. Observations correspond to the evaluation of a single
CI test on data.

The particle filter algorithm, shown in Algorithm 2, is
used in line 9 of PFMN to transform population Xt to Xt+1.
The change in the probability distribution from Prt(X) to

Algorithm 2 Particle filter algorithm. X ′′ =
PF (X , M, f, q).

1: Prt(X) ←− f(X)
2: for all particles x ∈ X do

3: w(x) ←− Prt(x)
Prt−1(x)

/* Compute weights. */

4: for all particles x ∈ X do

5: ew(x) ←− w(x)P
x′∈X

w(x′)
/* Normalize weights. */

6: /* Resample particles in X using ew as the sampling probabili-
ties. */

7: X ′ ←− resample(X , ew)
8: /* Move each particle in X ′ M times using Metropolis-Hastings

and distribution Prt(X). */
9: X ′′ ←− ∅

10: for all x ∈ X ′ do
11: X ′′ ←− X ′′ ∪ M-H(x, M, Prt, q).
12: return X ′′

Algorithm 3 Metropolis-Hastings algorithm. x′ =
M − H (x, M, p, q).

1: x(0) ←− x
2: for i = 0 to M − 1 do
3: u ∼ U[0,1].

4: x� ∼ q(x� | x(i)).

5: if u < A(x(i), x�) = min
˘
1,

p(x�)q(x(i)|x�)

p(xi)q(x�|x(i))

¯
then

6: x(i+1) ←− x�

7: else
8: x(i+1) ←− x(i)

9: x′ ←− x(M)

10: return x′

Prt+1(X) is reflected in a “weight.” This weight is used as
a probability in the resampling step (line 7) to bias selection
(with replacement) among the particles in Xt. In the final
step, all particles are “moved” (lines 9–11) through M pairs
of proposal/acceptance steps within the Metropolis-Hastings
(M-H) algorithm, shown in Alg. 3 [Andrieu et al., 2003]

(in our experiments we use M = 16). This algorithm re-
quires that Prt(X) and a proposal distribution q(X� | X) be
provided as parameters. Prt(X) has already been addressed
above in Eq. (5). As in many particle filtering applications,
the proposal distribution is a key factor for the success of
PFMN, and is discussed in detail in the next section.

4.3 Proposal distribution for structures

As discussed previously, to use the Metropolis-Hastings al-
gorithm one must provide a proposal distribution. Here, we
use a mixture proposal q = paqa + (1 − pa)qb, consisting of
a global component qa and a local component qb. (We used
pa = 0.05 in our experiments). The components qa and qb

are as follows:

• Global proposal qa (Random walk): qa(x� | x) gen-
erates a sample x� from x by iteratively inverting each
edge of x with probability α. (In our experiments, we
use α = 0.05). Thus, if h denotes the Hamming dis-
tance between structures x and x�, and m = n(n−1)/2,
where n is the number of nodes (same for both struc-
tures), we have that qa(x� | x) = αm(1 − α)m−h.

• Local proposal qb (Equivalence-class moves): qb(x
� |

x) chooses to either (a) remove an edge from set A−(x)
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(described below), (b) add an edge from set A+(x), or
(c) remove an edge e and add e′ where (e, e′) ∈ A±(x).
Each of (a), (b), or (c) is chosen with probability 1/3.
Sets A+(x), A−(x) , and A±(x) are defined as:

A−(x) = {e ∈ E(x) | x′ = (V , E(x) − {e}), x′ ∼t x}

A+(x) = {e ∈ Ē(x) | x′ = (V , E(x) ∪ {e}), x′ ∼t x}

A±(x) = {(e, e′) | e ∈ E(x), e′ ∈ E(x) ∪ {e},

x′ = (V , (E(x) − {e}) ∪ {e′}), x′ ∼t x}

where E(x) is the set of edges of structure x and Ē(x)
is its complement. The set A+(x) (A−(x)) is the set of
all edges that are missing (existing) in x that if added
to (removed from) x, produce a structure that will be
equivalent to x i.e., in class {yx

1:t}. The set A±(x) is the
set of edge pairs (e, e′) such that if e is removed and e′

added to x the resulting structure will also be equivalent.
Therefore the result of any move under this proposal is
a structure that is guaranteed to be equivalent to x, with
Hamming distance from x of at most 1.

The local proposal was designed to maximize accep-
tance of proposed moves (i.e., line 5 of the M-H algorithm
evaluating to true) by proposing moves to independence-
equivalent structures, which have provably the same posterior
probability. A well-designed proposal q(X� | X) i.e., one
that ensures convergence to the posterior distribution Prt(X),
must also satisfy the requirements of aperiodicity and irre-
ducibility [Andrieu et al., 2003]. The above proposal q satis-
fies both requirements: it is aperiodic since it always allows
for rejection, and irreducible since its support is the entire set
of structures X .

5 Experiments

We experimentally compare PFMN with the GSIMN al-
gorithm of [Bromberg et al., 2006] on both artificial and
real-world data sets. GSIMN is a state-of-the-art exact
independence-based algorithm that uses Pearl’s axioms of CI
tests to infer certain tests without actually conducting them.
We report: (a) weighted number of tests, and (b) accuracy.
The weight of each test is used to account for the execu-
tion times of tests with different conditioning set sizes, and
is taken to be the number of variables involved in each test—
see [Bromberg et al., 2006] for details. To obtain the quality

of the recovered network, we measure accuracy as the frac-
tion of unseen CI tests that are correct i.e., we compare the
result of each test on the resulting structure (using vertex sep-
aration) with the true value of the test (calculated using vertex
separation in the true model for artificial domains or statisti-
cal tests on the data for real-world domains). The purpose
of this procedure is to measure how well the output network
generalizes to unseen tests.

5.1 Artificial Experiments

We first evaluated our algorithm in artificial domains in which
the structure of the underlying model, called true network, is
known. This allowed (i) a systematic study of its behavior
under varying conditions of domain sizes n and amount of
dependencies (reflect in the number of edges m in the true
network), and, (ii) a better evaluation of quality of the output
networks because the true model is known. True networks
were generated randomly by selecting the first m = τ

(
n

2

)

pairs in a random permutation of all possible edges, τ being
a connectivity parameter.

Fig. 3 shows the results of experiments for which CI tests
were conducted directly on the true network through vertex-
separation, i.e., outcomes of tests are always correct. Fig. 3
(left) shows the ratio of the weighted cost of CI tests con-
ducted by PFMN compared to GSIMN for two domain sizes
n = 16 (above) and n = 20 (below), a number of connectiv-
ities (τ = 0.1, 0.3, 0.5, 0.7, and 0.9), and an increasing num-
ber of structure particles N . We can see that weighted cost of
PFMN is lower than that of GSIMN for small (τ = 0.1, 0.3)
and large (τ = 0.7, 0.9) connectivities, reaching savings of
up to 78% for n = 20 and τ = 0.1. The case of τ = 0.5 is
inconclusive—PFMN does better in some, but not all cases.
This can be explained by the fact that the number of structures
with connectivity τ grows exponentially as τ approaches 0.5
(from either side), which clearly makes the search task in
PFMN more difficult. Fig. 3 (middle) shows that even though
PFMN is an approximate algorithm, its accuracy for large
enough number of particles N is exactly 1 in all but a few
cases (e.g., N = 160, n = 16, τ = 0.5). GSIMN is an exact
algorithm, i.e., its accuracy is always 1 when independence
tests are correct, which is the case for the above experiments.
Its accuracy is thus omitted from the figures. Fig. 3 (right)
shows that PFMN does much fewer (non-weighted) test than
GSIMN, and very close to the optimal number of tests which
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Figure 4: Performance comparison of PFMN and GSIMN on data. Left: Accuracy of
PFMN and GSIMN vs. data set size for sampled data. Right: Ratio of weighted cost of
PFMN vs. GSIMN and difference between accuracy of PFMN and GSIMN on real data
sets. The numbers on the x-axis correspond to data set indices in Table 1.

Table 1: Comparison of PFMN vs.
GSIMN for real-world data.

Data set w cost Accuracy

# name n |D| GSIMN PFMN GSIMN PFMN

1 haberman 5 305 20 22 0.971 0.971
2 adult 10 32561 138 144 0.785 0.679
3 hayes-roth 6 132 30 26 0.831 0.831
4 balance-scale 5 625 20 17 0.871 0.743
5 nursery 9 12960 72 60 0.878 0.858
6 monks-1 7 556 42 35 0.912 0.912
7 car 7 1728 42 35 0.826 0.845
8 baloons 5 20 20 14 0.857 0.857
9 crx 16 653 240 161 0.898 0.914
10 hepatitis 20 80 380 235 0.876 0.889
11 cmc 10 1473 126 75 0.893 0.750
12 tic-tac-toe 10 958 102 54 0.836 0.758
13 bridges 12 70 132 68 0.844 0.827
14 alarm 37 20001 1335 614 0.797 0.926
15 imports-85 25 193 633 259 0.688 0.688
16 flag 29 194 839 320 0.878 0.878
17 dermatology 35 358 1211 408 0.813 0.754

is log 2(n
2) =

(
n

2

)
assuming a uniform distribution over struc-

tures, since the size of the space of structures is 2(n

2). The
figure shows that PFMN is very close to this optimal for a
range of domain sizes n.

We also compared the robustness of PFMN and GSIMN to
uncertainty in the outcome of tests. This uncertainty is ex-
pected to occur in small data sets. Data sets of different sizes
were sampled from true networks of n = 20 and n = 16 vari-
ables both of connectivity τ = 0.5. Fig. 4 (left) shows the ac-
curacy of PFMN and GSIMN vs. the size of the data set (|D|).
Accuracy of PFMN clearly outperforms that of GSIMN, with
the gap between their accuracies growing steadily with the
data set size for both n = 16 and n = 20.

5.2 Real-World Experiments

We also conducted experiments on a substantial number of
data sets obtained from the UCI ML archive [D.J. Newman
and Merz, 1998]. As above, we compare the weighted cost
and accuracy of PFMN vs. GSIMN. Fig. 4 (right) shows the
ratio of the weighted cost of PFMN vs. GSIMN (i.e., a num-
ber smaller than 1 shows improvement of PFMN vs. GSIMN)
and the difference in accuracies of PFMN and GSIMN (i.e.,
a positive histogram bar shows an improvement of PFMN vs.
GSIMN). In these experiments, PFMN used N = 200. The
numbers in the x-axis are indices to the data sets shown in
table 1. For 15 out of 17 data sets, PFMN required lower
weighted cost, reaching ratios as low as 0.38. Moreover, for
11 out 17 data sets PFMN achieves this reduction in cost with
little or no reduction in accuracy compared to GSIMN, the
rest exhibit only a modest reduction (less than 15%).

6 Summary and Conclusion

In this paper we presented PFMN, an independence-based al-
gorithm for learning the structure of a Markov network from
data. We presented an analysis of the domain of structures
and independencies and a number of interesting relations us-
ing an explicit generative model. We also showed experi-
mentally that, compared to existing independence-based al-
gorithms, PFMN is more resistant to errors in the test con-
ducted and executes fewer tests in many cases. This helps in
domains where data are scarce and tests uncertain or data are
abundant and/or distributed over a potentially slow network.
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