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Abstract—This work presents IBMAP, an approach for
robust learning of Markov network structures from data;
together with IBMAP-HC, an efficient instantiation of the
approach. Existing Score-Based (SB) and Independence-Based
(IB) approaches must make concessions either on robust-
ness or efficiency. IBMAP-HC improves robustness efficiently
through an IB-SB hybrid approach based on the probabilistic
Maximum-A-Posteriori (MAP) technique; and the IB-score, a
tractable expression for computing posterior probabilities of
Markov network structures. Performance is first tested against
IB and SB competitors on synthetic datasets. Against IB com-
petitors (GSMN algorithm and a version of the HHC algorithm
adapted here for Markov networks discovery), IBMAP-HC
showed reductions in edges Hamming distance with same
order running times. Against SB competitors, both IBMAP-HC
and our adaptation of HHC produced comparable Hamming
distances, but with running times orders of magnitude faster.
We also evaluated IBMAP-HC in a realistic, challenging test-
bed: EDAs, evolutionary algorithms for optimization that
estimate a distribution on each generation. Using IBMAP-HC
to estimate distributions, EDAs converged to the optimum
faster in all benchmark functions considered, reducing required
fitness evaluations by up to 80%.

Keywords-Graphical Models; Markov networks; Structure
Learning; Estimation of Distribution algorithms;

I. INTRODUCTION

We present in this work the IBMAP (Independence-
Based Maximum a Posteriori) approach for robust learning
of Markov network (MN) structures from data (1; 2);
together with IBMAP-HC (for hill-climbing), an efficient
instantiation of the approach. MNs, together with Bayesian
networks (BN) belong to the family of probabilistic graph-
ical models, a computational framework for compact rep-
resentation of joint probability distributions. They consist
of an undirected (MNs) or directed (BNs) graph G and a
set of numerical parameters θ. Each of the n nodes in G
represents a random variable, and the edges (undirected or
directed) encode conditional independences between them.
The graph is therefore commonly called the independence
structure of the distribution, or simply, the structure. The
importance of these independencies is that they factorize the
joint distribution over the whole set of variables into factors
over subsets of variables, resulting in important reductions
in the dimensionality of the distribution.

An interesting problem is learning these models from
data, consisting in learning both G and θ. In many practical

scenarios the goal of knowledge discovery, or the problem
of understanding a domain, is clearly distinguished from
the goal of inference, or the problem of predicting variable
values under different contexts. In this work we concentrate
on the sub-problem of learning the structure of interactions
among variables, an important source of information in
knowledge discovery. This problem has resulted in important
contributions during recent years, although many of its core
difficulties remain a challenge and are under intense work.

The literature shows two main approaches for learning
structures from data: Independence-Based (IB) and Score-
Based (SB) algorithms. IB algorithms proceed by first
learning G, and then, given G, estimate θ. To learn G they
perform a succession of statistical independence tests (3),
or simply tests hereon. Each test responds to independence
queries between two variables X and Y in the domain
of variables V, given some subset Z of variables in V.
We denote the independence and dependence between this
triplet 〈X,Y,Z〉 by (X⊥⊥Y |Z) and (X �⊥⊥Y |Z), respectively.
Examples of tests used in practice are Mutual Information,
Pearson’s χ2, G2 (4), the Bayesian test (5; 6), and for con-
tinuous Gaussian data the partial correlation test (3), among
others. For learning G, IB algorithms proceed iteratively. On
each iteration they decide first the test to be executed based
on the independences learned so far, and then, discard all
those structures inconsistent with the independence outcome
of the test; until a single structure is left.

For BNs, the IB approach has been mainly exemplified
by the SGS and PC algorithms (3), and the family of
structure learning algorithms generalized by the local-to-
global (LGL) framework of (7). LGL is a framework for
producing structure learning algorithms from algorithms that
learn the local neighborhood of variables (according to the
Generalized Local Learning framework of (8)). The Grow
Shrink algorithm, and many improvements widely used in
the field such as IAMB and its variants, HITON-MB, and
MMMB learn the probabilistic local neighborhood called
the Markov blanket (defined formally in Section II-A1). The
Grow Shrink algorithm has been used for learning BNs (9),
but for BNs, it is possible to learn the structure from smaller
neighborhoods formed by the parent (P) and children (C)
of a node in the network, resulting in the HITON-PC and
MMPC local algorithms, and the corresponding structure
learning algorithms HHC and MMHC, respectively. Adapta-
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tions of the LGL approach based on the Grow Shrink local
learning algorithm has been proposed for MNs, resulting in
the GSMN algorithm (10). In this work we consider HHC
as a competitor for IBMAP-HC as it is one of the best IB
algorithms for BNs according to results presented in (7).
We thus present in the experimental section an adaptation
of HHC for learning MNs, denoted here HHC-MN.

The learning of numerical parameters θ for MNs is an
NP-hard problem (11), solved in practice through a data-
intensive numerical algorithm (12). IB algorithms learn G
without estimating θ, contrary to SB algorithms as explained
below. They are therefore efficient, reaching in some cases
polynomial complexities in the number of tests; e.g., the
GSMN algorithm requires O(n2) tests. Another advantage
of these algorithms is that they are amenable to proof of cor-
rectness under the assumptions of faithfulness of the graph
to the model (i.e., the graph can encode the true underlying
independences), positivity of the underlying model, and tests
reliability. To the best of the authors knowledge, the first
assumption is made by all existing IB and SB algorithms,
whereas the second assumption is made by all existing
IB algorithms. The third assumption is violated unless the
datasets are sufficiently large. Both approaches benefit then
from larger datasets, but the problem is exacerbated for IB
algorithms as tests reliability degrades exponentially with the
amount of variables involved (for some fixed size dataset).
For good quality, these tests require enough counts in their
contingency tables, and there are exponentially many of
those (one per value assignment of all variables in the tests).
For example, for the χ2 test (13) recommends that the test
be deemed unreliable if more than 20% of these cells have
an expected count of less than 5 data points.

SB algorithms (14; 15; 16), approach the problem of
structure discovery as an optimization problem on the space
of structures and the space of parameters, looking for the
one with maximum score. Examples of scores are maximum
likelihood, minimum description length (17), and Pseudo-
likelihood (18; 15), among others. An advantage of these
algorithms is their resiliency to data scarceness, at the
expense of important computational costs when learning
MNs. For each structure during the search, they require
the estimation of θ; computationally intensive for requiring
an inference step. Also, to avoid over-fitting, many of
these methods consider a regularization term adding an
extra hyper-parameter λ, whose best value has to be found
empirically (e.g., running the training stage for several λ’s,
potentially with cross-validation).

The rest of this work is organized as follows. Section II
presents IBMAP, an IB-SB hybrid approach. This approach
is based on a MAP search of the structure with maximum IB-
score, which is a score for structures that can be computed
efficiently with O(n2) tests. This section also introduces
an efficient instance of IBMAP, called IBMAP-HC. De-
tailed and systematic comparisons between IBMAP-HC and

representatives of the IB and SB approaches are presented
in the experimental Section III. The results show that our
solution improves significantly the quality of current state-
of-the-art IB approaches, with comparable runtimes; and
results in outputs with quality comparable to state-of-the-
art SB approaches, with orders of magnitude faster runtimes.
Section IV further evaluates the performance of IBMAP-HC
against competitors in a more realistic scenario: Estimation
of Distribution algorithms (EDAs). Finally, the paper con-
cludes with a summary and possible directions of future
work in Section V.

II. THE IBMAP APPROACH

We introduce now our IBMAP approach for learning the
structure of a MN from data (denoted D hereon). IBMAP
applies the well known model selection MAP statistical
technique to the structure selection problem:

G� = arg max
G

Pr(G | D). (1)

IBMAP is a hybrid of the IB and SB approaches. It is
SB in that it follows a MAP approach, with the score being
Pr(G | D). It is IB in that it learns G by performing tests
on data. The main difference of IBMAP with existing SB
algorithms is that Pr(G | D) as a score ranks structures G,
not models (G,θ).

As mentioned, tests require exponentially large datasets
to respond with total certainty about conditional indepen-
dencies, leading in practice to erroneous independence as-
sertions. Most of the existing IB algorithms simply ignore
this fact and proceed, potentially discarding the true struc-
ture. Like (6), we model this uncertainty by the posterior
probabilities Pr(c|D) of independence assertions c, and
relate them to the posterior of the structure G through
the concept of closure, denoted C(G), and defined as the
set of independence assertions ci, i = 1, . . . , |C(G)|, that
completely determine the structure G. The posterior of G
can be therefore equated to the posterior of the closure, i.e.,

Pr(G | D) = Pr(C(G) | D).

To compute the posterior Pr(C(G) | D) we can apply
the chain rule over all its independence assertions obtaining∏|C(G)|

i=1 Pr(ci|c1, . . . , ci−1,D). To the best of the authors
knowledge, there is no existing method for computing prob-
abilities of independence assertions conditioned on other
independence assertions and data. There is, however, the
Bayesian test for computing the posteriors of independence
assertions (5). To apply this test we should eliminate inde-
pendence assertions from the conditioning, that is, assume
independence assertions are mutually independent given D.
Interestingly, this assumption is made by all IB algorithms
that, based on the independencies learned so far, decide on
which independence to test next, but not the value of these
independencies, which are only influenced by the input data
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D. The result of this approximation is the IB-score σ(G) of
G, as a factorization of the posterior of the closure in the
following product of posteriors of independence assertions:

σ(G) = Pr(C(G) | D) ≈
∏

c∈C(G)

Pr(c | D). (2)

A. THE IBMAP-HC ALGORITHM

We describe now IBMAP-HC, our efficient instantiation
of IBMAP, by instantiating the closure and the MAP search.

1) Markov Blanket Closure: We propose a closure based
on Markov blankets. The Markov blanket of a variable X ∈
V is a set BX ⊆ V−{X} of variables that “shields” X of
the probabilistic influence of variables not in BX , i.e., for
every X �= Y ∈ V, and Y /∈ BX , (X⊥⊥Y |BX − {Y }). It
has been shown (2) that for Markov networks the Markov
blanket BX of variable X corresponds to the neighbors of
X in the network.

The proposed Markov-blanket closure is:

C(G) =
⋃

X∈V

CX(G), (3)

where each CX(G) is the union of two mutually exclusive
sets:

CX(G) =
{

(X �⊥⊥W |BX \W ) : W ∈BX

}
∪{

(X⊥⊥W |BX \W ) : W /∈BX

}
, (4)

that is, for each W ∈ BX add (X �⊥⊥W |BX \W ), or add
(X⊥⊥W |BX \W ) otherwise.

The decomposition of the closure into closures for each
variable results in a decomposition of the score into a
product of variable scores: σ(G) =

∏
X∈V σX(G). This

decomposition allows for an incremental computation of
the score σ(G′) based on the score σ(G) of a structure
G differing with G′ by a number k of edges. We start
considering the case that G and G′ differ by a single edge
(X,Y ). Being the blankets the set of neighbors in the
structure, the edge difference results in only blankets BX

and BY differing between the structures, and therefore only
score σX and σY has to be recomputed to obtain the score of
G′, i.e., σ(G′) = σ(G) [σX(G′)σY (G′)] / [σX(G)σY (G)],
with a cost of O(n) tests. For k edges differences between
the structures, at most 2k blankets are affected, and therefore
at most 2k factors has to be re-computed, again a cost of
O(n) tests.

The incremental computation of the score may have an
important impact in local search optimization algorithms,
such as the IBMAP-HC algorithm described in the next
section, that proceed by exploring successively structures a
few edges apart.

At this point, it still remains to prove that C(G) as defined
by Eq. (3) is in fact a closure, i.e., that its independence

assertions determine the structure. For that let us first present
the following theorem:

Theorem 1 (Pearl and Paz 1987 (19)): Every positive
probability distribution P on V, has a unique Markov
network G satisfying, for every X �= Y ∈ V,

(X⊥⊥Y |BX \Y ) in P ⇔ (X⊥⊥Y |V\{X,Y }) in P (5)

(X,Y ) /∈ E(G) ⇔ (X⊥⊥Y |V\{X,Y }) in P (6)

where E(G) denotes the set of edges in structure G.
To prove that the closure determines the no-edge between

X and Y in G, we first note that a no-edge implies
Y /∈ BX , and therefore the closure should contain exactly
the independence assertion of the l.h.s. of Eq.(5), which by
transitivity with the equivalence of Eq.(6), determines the
no-edge (the same result is obtained starting from the fact
that X /∈ BY ). Edges in G are similarly determined using
the counter-positive of these equivalences.

2) Hill-climbing MAP Search : To conclude the presen-
tation of our approach we present IBMAP-HC, an efficient
implementation of the MAP search of the structure with
maximum IB score σ, computed over the independence
assertions given by the Markov blanket closure C.

IBMAP-HC is outlined in Algorithm 1. It performs a hill-
climbing search in the space of structures, starting in the
empty structure Gi, i = 0 (line 2), selecting in line 4 a
candidate G̃i+1, and terminating in line 6 if such candidate
does not improve the exact IB score σ(Gi) of Gi. To select
the candidate, instead of using the neighbor with maximum
IB score σ, it selects G̃i+1, the neighbor that maximizes
an approximation of the IB score, denoted σ̃. As the set
of neighbors of Gi, we considered the set of structures
one edge-flip away from Gi, denoted N 1(Gi), where a flip
consists in removing an edge if such edge exists, or adding
it otherwise.

Algorithm 1 IBMAP-HC
1: i← 0
2: G0 ← empty structure;
3: repeat over increasing values of integer i
4: G̃i+1 ← arg max

G′∈N 1(Gi)

σ̃(G′)

5: until σ(G̃i+1) < σ(Gi)
6: return Gi

By selecting a potentially sub-optimal neighbor, the ap-
proximation may result in the algorithm terminating before
reaching a local maxima. However, this comes along with
important computational savings, from O(n4) to O(n) tests
per iteration, and an overall final cost of O(n2) tests;
as we proceed to explain. If the maximization of line 4
were performed over the exact IB score, the cost of the
maximization would be O(n4) tests; that is,

(
n
2

)
IB score

calculations of O(n2), one for each structure in N 1. The

499



Table I: HDs, runtime, λ∗ (only SB) for GSMN, HHC-MN, IBMAP-HC, and SB algorithms.
n=20

HD RUNTIME (ms) λ∗

τ D GSMN HHC-MN IBMAP-HC SB GSMN HHC-MN IBMAP-HC SB SB

2
25 42 30 17 20 242 41 67 949 0.300
50 49 16 18 17 84 36 34 2472 0.150
100 50 16 15 14 111 18 40 21778 0.080

4
25 49 33 41 35 203 60 40 3718 0.240
50 45 32 31 32 89 64 66 12400 0.150
100 45 22 30 34 101 95 69 15104 0.160

8
25 79 83 78 76 15 144 76 772561 0.040 6
50 83 80 85 71 45 124 74 990802 0.010
100 70 76 72 72 57 232 85 1227105 0.009

first thing to note is that all neighbors G′ ∈ N 1(Gi)
differ by only one edge with Gi. Also, at each iteration
of the loop the score of Gi was already computed in the
previous iteration, we can therefore compute the score of G′

incrementally as explained in the previous section, resulting
in a cost of the maximization of

(
n
2

)
computations of O(n)

each. The algorithm computes instead the approximate score
σ̃(G′), for some G′ ∈ N 1(Gi). As discussed in the previous
section, when differing by an edge (X,Y ), assertions in CX

and CY of the two structures differ as well. The score of
G′ is computed approximately assuming that the posteriors
of all these assertions are not affected, with the exception
of assertions corresponding only to triplets over both X
and Y , i.e., 〈X,Y,BX \ Y 〉 and 〈Y,X,BY \X〉. These
assertions have complementary values in G′ and Gi. For
instance, if (X,Y ) ∈ E(Gi) and (X,Y ) /∈ E(G′), then
Eq. (3) indicates that (X �⊥⊥Y |BX \Y ) ∈ CX(Gi) while
(X⊥⊥Y |BX\Y ) ∈ CX(G′), and (Y �⊥⊥X|BY \X) ∈ CY (Gi)
while (Y⊥⊥X|BY\X) ∈ CY (G′). Being complementary, i.e.,
they add up to 1, the posteriors for G′ can be computed from
those of Gi, which were already computed in the previous
iteration of the main loop. We can compute the posteriors for
G′, and the whole approximate score σ̃(G′) in constant time,
resulting in a reduction from O(n4) tests in the computation
of the maximization of line 4, to no test computation at all.

Although apparently rather drastic, the approximation is
well justified by noticing that all ignored independence
assertions maintain their truth value and differ only in the
conditioning sets having one variable more or one variable
less (depending on whether which structure has the extra
edge). For instance, if G′ has the extra edge (X,Y ), the
independence assertion (X⊥⊥W |BX \W ) in CX(Gi) be-
comes (X⊥⊥W |BX , Y \W ) in CX(G′), for some arbitrary
W ∈ V\{X,Y }. The approximation is reduced to assuming
that two independence assertions differing by one variable
in the conditioning set have similar posteriors.

At this point the most expensive operation in the main
loop becomes the computation of the (exact) IB score
of G̃i+1 at line 6, with a cost of O(n) when computed
incrementally; resulting in an overall computational cost for

the loop of O(M · n), M denoting the number of iterations
until terminate. To this cost, it only remains to add the cost
of computing the initial structure G0, with a cost of O(n2),
resulting in an overall cost for the algorithm of O(n2+Mn).
Since M can be obtained only empirically, experiments were
performed to show that M is not a source of an extra degree
in the complexity by showing it grows at most linearly with
n. This result is shown in the next section.

III. EVALUATION OF STRUCTURE LEARNING

This section describes several experiments for testing
empirically the effectiveness of IBMAP-HC in improving
the quality of structures discovered by existing IB algorithms
in equivalent runtimes, and obtaining competitive qualities
with SB algorithms with lower runtimes.

As IB competitors we considered GSMN as a well es-
tablished MN structure learning algorithm (10), and HHC, a
state of the art, robust IB structure learning algorithm of BNs
(8), adapted here for MNs. For a fair comparison against
IBMAP-HC, we run both algorithms with the Bayesian test
for statistical independence queries.

The GSMN algorithm is an efficient algorithm that com-
putes only O(n2) tests, constructing the structure from the
Markov blanket of each variable; learned with the Grow-
Shrink algorithm (9). HHC instead, learns the structure
by learning the set of parents and children (PC) of each
variable through the interleaved HITON-PC with symmetry
correction algorithm (20; 8). This is in fact possible for BNs,
even though the Markov Blanket of a variable is composed
not only by the PC set but also by the spouses of the variable
(i.e., the other parents of its children). Interleaved HITON-
PC executes at each iteration a step exponential in the size
of the current estimate of the PC set. In many practical
situations, however, a node may have many parents, and
thus the PC of any of its parents may be much smaller
than its Markov Blanket. For this reason the algorithm has
shown in practice to scale to thousands of variables despite
this exponentiality (see a thorough experimental evaluation
in (8)). For the case of MNs, being undirected graphs, the
equivalent of the PC of a variable is its neighbors, which
is exactly its Markov Blanket. It is therefore expected that
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Figure 1: Average of HDs for GSMN, HHC-MN and IBMAP-HC algorithms

HITON-PC learns the Markov Blanket of a MN, and thus
it can be used as part of HHC to learn the undirected
structure. To get a MNs learning algorithm we then simply
omit the final step of HHC that orients the edges, denoting
the resulting algorithm by HHC-MN. As a final remark, we
note that being the PC and Markov Blanket sets equivalent
in MNs, the savings gained for BNs are non-existent and
thus HHC-MN is expected to scale to fewer variables than
its BN counterpart.

As a representative of the SB approach we considered a
variation of an L1-regularized maximum Pseudo-likelihood
estimator. It is a double-loop learning process that consists
in a Grafting-based greedy search of the space of structures
(16; 1). The outer loop check first the termination condition,
and then proposes a new structure greedily by the Grafting
criteria (21). Then, in the inner loop, the parameters for this

new structure are learned by finding those that maximize the
L1-regularized Pseudo-likelihood of the model using the the
LBFGS algorithm (22).

The experiments were conducted on synthetic datasets
generated using a Gibbs sampler by sampling from known
random models. This allows a systematic and controlled
study, providing a known underlying structure, and a better
assessment of the quality by comparing the edges Ham-
ming distance (HD) between the learned structure and the
underlying one, i.e., the sum of false positive and false
negative edges of the learned structure. We report also the
execution runtimes of the algorithms. The synthetic random
models were generated for domains of n = 20, 30, 50, 75
binary variables. For each domain size, 10 random networks
were generated for increasing connectivities τ = 1, 2, 4, 8
by considering as edges the first nτ/2 variable pairs of
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a random permutation of the set of all variable pairs. We
considered here a pair-wise factoring of the models using
only factors for cliques of size 2 (i.e., one factor per edge).
The 4 parameters of each clique (one per configuration of the
two binary variables) were generated randomly but assuring
a strong enough dependence by forcing the log-odds of
the two variables in the edge to be larger than 1.0. Given
these models, datasets with increasing number of data-points
D = 25, 50, 100, 200, 400, 800, 1600, 3200 were sampled for
each (n, τ) combination. Because of the regularization term,
the SB algorithm was run for a sufficiently large range of
λ values to assure they contain the model with lowest HD.
For τ = 8 (both n’s) 10 values in the interval [0.007, 0.1]
were considered, whereas for τ = 2 and τ = 4, 10 values
in the interval [0.1, 0.5] were considered.

Due to the large runtimes of our SB implementation,
comparisons against it were conducted for one repetition
only, domains of n = 20 variables, connectivities τ = 2, 4, 8
and datasets with D = 25, 50, 100 datapoints. Resulting HDs
and runtimes (in milliseconds) are shown in Table I. The
HD reported for SB is the smallest found over the range
of λ’s. The corresponding λ, denoted λ∗, is shown in the
neighboring column. Similarly, the runtime reported for SB
corresponds to the single run of λ = λ∗. In practice, λ∗

cannot be selected by this way as the underlying model is
unknown (i.e., HD cannot be computed). This way, however,
we abstract our results from any particular hyper-parameter
λ selection procedure. Other methods of selecting λ∗ can
only result in equal or worst HD and runtime for SB, only
improving the merits of IBMAP-HC and HHC-MN against
it. The table shows that both, IBMAP-HC and HHC-MN
qualities are better (lower HD) than that of GSMN in all
cases except of τ = 8, D = 100, where GSMN shows HD
reduction of up to 35% against IBMAP-HC. In contrast,
IBMAP-HC and HHC-MN improve in all other cases, with
comparable runtimes, as the corresponding columns show.

When compared to the SB algorithm, IBMAP-HC and
HHC-MN also perform well, showing comparable HDs.
As expected, both algorithms run much faster than the SB
algorithm, with runtimes 1−4 orders of magnitude faster in
all cases. This difference in runtime may be up to 2 orders
of magnitude larger in practice, as the SB algorithm must
be ran for the whole range of λ’s for finding λ∗; in some
cases even requiring a cross-validation run per λ.

In a second experiment we conducted the comparison
only among IB algorithms, for datasets with n = 30, 50, 75,
τ = 1, 2, 4, 8 and a more detailed increasing set of values
D = 25, 50, 100, 200, 400, 800, 1600, 3200. Figure 1 shows
such comparison reporting the mean values and standard
deviations of the HD of GSMN, HHC-MN and IBMAP-HC,
for 10 different datasets. The graphs are ordered in the
Figure by columns for different n values, and by rows
for different τ values. The figure shows clearly that both,
IBMAP-HC and HHC-MN qualities are better (lower HD)
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Figure 2: Number of IBMAP-HC climbs for D = 1000

than that of GSMN in all cases. IBMAP-HC presents better
or equal (up to statistical significance) HDs than that of
HHC-MN in all cases of τ = 1; all cases of τ = 2 except
D = 200 and 400; only for D = 25, 50 in τ = 4; and all
cases of τ = 8 except the two results of D = 1600, 3200 of
n = 30. The best improvements are obtained for τ = 1 with
reductions of IBMAP-HC’s HD up to a 25% of HHC-MN’s
HD for n = 75 and low D.

We do not show runtimes for n = 30, 50, 75, but similarly
to n = 20, for all three algorithms the runtimes were
similar in all τ ’s and D’s. Instead, we show empirically the
O(n2) runtime complexity of IBMAP-HC by showing that
the number of climbs M of IBMAP-HC grows linearly with
n (c.f. Section II-A2). Fig. 2 shows measurements of M for
problems with increasing n, and τ = 1, 2, 4, 8, D = 1000,
indicating that M grows linearly or slower.

IV. IBMAP-HC FOR EDAS

We present now results of evaluating IBMAP-HC in a
practical scenario, the Estimation of Distribution algorithms
(EDA). These are variations of the well-known evolutionary
algorithms, that perform the same selection and variation
stages, but replace the crossover and mutation stages for gen-
erating a new population, with the estimation and sampling
stages. The former stage estimate a probability distribution
from the current population, generating the next population
by sampling from it (thus their name). In the estimation
stage, EDAs estimate the probability distribution from the
dataset corresponding to the current population. This is
because they associate each gene to a random variable,
each individual to a joint assignment of these variables, and
the selected population to a sample of the distribution. The
rationale for replacing selection with estimation is that by
estimating the distribution from the selected individuals, that
is, those best fitted, the sampling stage would produce novel,
yet well-fitted individuals. For more details see (23; 24).

Several MN-based EDAs have been proposed recently
that uses MNs for modeling the distribution, as (25; 26),
among others. As a test-bed we considered the work of
Shakya and Santana: the Markovianity Optimization Algo-
rithm (MOA). This is an MN-based EDA that learns the MN
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Table II: Results for Royal Road (left) and OneMax (right) problems
Royal Road

MOA MOA’
n D∗ f∗ D∗ f∗

16 100 545.00 (59.86) 50 337.50 (176.09)
32 400 3800.00 (210.82) 400 2140.00 (134.99)
64 800 9120.00 (252.98) 800 4440.00 (126.49)
92 1600 18400.00 (533.33) 800 5080.00 (500.67)
120 1600 31120.00 (822.31) 1600 9840.00 (386.44)

OneMax
MOA MOA’

n D∗ f∗ D∗ f∗

15 50 267.50 (35.45) 50 202.50 (14.19)
30 200 1170.00 (94.87) 100 475.00 (42.49)
60 800 5200.00 (98.46) 200 1050.00 (52.70)
90 800 5560.00 (126.49) 400 2220.00 (63.25)
120 1600 11200.00 (871.53) 800 4400.00 (312.33)

structure from the population using an efficient IB structure
learning algorithm based on mutual information (MI), a
simple IB structure learning algorithm described in detail in
the same work. Sampling in MOA is conducted through a
variation of a Gibbs sampler that requires only the structure
of the model, avoiding the need to learn the model param-
eters. The implementation of MI in MOA takes advantage
of experts information indicating the maximum number of
neighbor variables that a variable can have, denoted here
k. We tested MI and IBMAP-HC for different values of k
(results not shown here), observing great sensitivity of MI
to its value, while IBMAP-HC showed no loss of quality.
In the experiments below we set the value of k for MI
to be the closest to the true value, resulting in the best
possible performance of MI, i.e., the strongest competitor
for IBMAP-HC.

We conducted experiments to compare IBMAP-HC as an
alternative structure learning within MOA, denoted MOA′,
and denoting by MOA the original version that uses MI.
Both versions were tested on two benchmark functions
widely used in the EDA’s literature: Royal Road and One-
Max, both bit-string optimization tasks, detailed in (27).
Each bit-string is modeled in the context of evolutionary
algorithms as a chromosome and each bit as a gene. In the
Royal Road problem, the variables are arranged in groups
of size γ. Its goal is to maximize the number of 1s in
the string, but adding γ to the fitness count only when a
group has all 1s, otherwise adding 0. For example, in the
case of γ = 4, an individual 111110011111 is separated
in the groups [1111] [1001] [1111], and only the first and
third groups contributes 4 to the fitness count, which in the
example equals 8. The underlying independence structure
therefore contains cliques of size γ, one per group. In our
experiments we used γ = 1 and γ = 4. The former is
known in the literature as OneMax. In the example, the
fitness is 10 for OneMax. Clearly, the optimal individual
for both problems is 111111111111.

In the experiments, MOA is iterated for 1000 generations
or until the optima is reached, whatever happened first. For
several runs differing in the initial (random) population,
we measured the success rate as the fraction of times the
optima is found. A commonly used measure of performance
in EDAs is the critical population size D∗; the minimum
population size for which the success rate is 100%. Smaller

D∗ values have a double benefit: (i) fewer fitness evaluations
for reaching the optima, and (ii) faster distribution estima-
tion. We report D∗ and the number of fitness evaluations
required for that population size, denoted f∗. More robust
algorithms are expected to require smaller D∗ and f∗ values.
To measure D∗ in Royal Road and OneMax, each version
of MOA was run 10 times for each of the population sizes
D = {50, 100, 200, 400, 800, 1600, 3200}. Then, for that
D∗, we report the average and standard deviation of f∗ on
each of those runs. In all the experiments the population is
truncated with a selection size of 50% and an elitism of 50%;
used for preventing diversity loss. In MOA, the parameter k
was set to 3 and 1 in Royal Road and OneMax, respectively.

Results are presented in Table II for Royal Road, and
OneMax. For both algorithms, MOA and MOA′, the ta-
ble report values of D∗, and the average and standard
deviation (in parenthesis) of f∗, for increasing problem
sizes n = 16, 32, 64, 92, 120 for Royal Road and n =
15, 30, 60, 90, 120 for OneMax. Results show that for f∗,
MOA′ always outperforms MOA; while for D∗, it is always
equal or lower. For Royal Road, the larger improvement
is for n = 92 where MOA′ requires 75% fewer fitness
evaluations f∗ and D∗ is halved. For OneMax, the larger
improvement is for n = 60 where MOA′ requires 80% fewer
fitness evaluations f∗ and D∗ is reduced to a quarter.

An interpretation of these results is that IBMAP-HC
estimates better the distribution. To confirm this hypothesis
we compared the structures learned by the two algorithms
over the same synthetic datasets considered in the previous
section. For n = 75, D = 100 and τ = 2 the HDs of MI
and IBMAP-HC were 132, and 75, respectively. For τ = 4
they were 233 and 143, respectively; and for τ = 8, 395 and
388, respectively. These results show clearly that the quality
of IBMAP-HC indeed outperforms that of MI. Finally, we
highlight that the efficiency of IBMAP-HC allowed it to be
run in large problems up to 120 genes in size, estimating
the structure over many generations.

V. CONCLUSIONS AND FUTURE WORK

This paper introduces a novel independence-based,
maximum-a-posteriori approach for learning the structure of
MNs; and IBMAP-HC, an efficient instantiation of IBMAP.
Unlike traditional SB algorithms, our method follows an
IB strategy for getting the MAP independences structure
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from data proposing an IB score. Experiments comparing
IBMAP-HC against IB and SB representative algorithms
indicate that our method improves in most cases over
the IB competitors with equivalent runtimes, and obtains
comparable Hamming distances than the chosen competitor
SB algorithm but with orders of magnitude faster runtimes.
IBMAP-HC was also tested in a practical, challenging
setting: Estimation of Distribution algorithms, resulting in
faster convergence to the optimum than a state-of-the-art
Markov network EDA algorithm, for the selected bench-
mark functions. The results, although conclusive in favor
of IBMAP-HC, could be reinforced by comparing it against
stronger competitors of the SB approach. As future work we
believe it is worthwhile exploring alternative instantiations
of the IBMAP approach (closure and search). Also, better
qualities are expected if the approximation of independence
between tests could be relaxed. Finally, the current approach
may be extended to tackle the more challenging problem of
model learning (structure plus parameters).
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