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Abstract

In the past years, several support vector machines (SVM) novelty detection
approaches have been applied on the network intrusion detection field. The
main advantage of these approaches is that they can characterize normal
traffic even when trained with datasets containing not only normal traffic
but also a number of attacks. Unfortunately, these algorithms seem to be ac-
curate only when the normal traffic vastly outnumbers the number of attacks
present in the dataset. A situation which can not be always hold

This work presents an approach for autonomous labeling of normal traffic
as a way of dealing with situations where class distribution does not present
the imbalance required for SVM algorithms. In this case, the autonomous
labeling process is made by SNORT, a misuse-based intrusion detection sys-
tem. Experiments conducted on the 1998 DARPA dataset show that the
use of the proposed autonomous labeling approach not only outperforms ex-
isting SVM alternatives but also, under some attack distributions, obtains
improvements over SNORT itself.

Keywords: Anomaly detection - Intrusion Detection Systems - SVM -
Labeling

1. Introduction

In the past years network security has become a serious problem. In the
early years of the Internet, the set of network protocols that supported it
worked reasonable well. However as the Internet grew, underlying security
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faults in those protocols were observed. Security faults in protocols such as
ARP, TCP, TELNET, SMTP and FTP have caused most of known attacks
against network data confidentiality, authenticity and availability. Currently
most of these problems have been fixed, however new ways to develop attacks
are discovered everyday.

Network managers must be well prepared in order to prevent network
attacks, e.g., being informed about new vulnerabilities. For several years,
intrusion detection systems (IDS) provided an invaluable help to network
managers, becoming an integral part of any network security package.

In the intrusion detection field two different approaches can be observed:
misuse detection and anomaly detection (Mukherjee et al., 1994). The main
idea behind misuse detection is to represent attacks in a form of a pattern
or a signature in such a way that even variations of these attacks can be
detected. Based on these signatures, this approach detects attacks through a
large set of rules describing every known attack (Tsai et al., 2009; Wu & Yen,
2009). The main disadvantage of the signature based approach is its difficulty
for detecting unknown attacks. The main goal of the anomaly detection
approach is to build a statistical model for describing normal traffic. Then,
any deviation from this model can be considered an anomaly, and recognized
as an attack. Notice that when this approach is used, it is theoretically
possible to detect unknown attacks, although in some cases, this approach
can lead to a high false attack rate. This ability to detect unknown attacks
has been the cause of the increasing interest in developing new techniques to
build models based on normal traffic behavior in the past years.

The anomaly detection approach has been a very active research topic
inside the machine learning community and it has been the subject of many
articles over the past years. One of the most successful approaches is based
on the idea of collecting data only from network normal operation. Then,
based on this data describing normality, any deviation would be considered
an anomaly. Different techniques were proposed for characterizing the con-
cept of normality (Lee & Stolfo, 1998; Hofmeyr et al., 1998; Catania &
Garcia Garino, 2008). In practice, however, it is difficult to obtain clean
data to implement these approaches. Verifying that no attacks are present
in the training data can be an extremely hard task, and for large samples
this is simply infeasible. On the other hand, if the data containing attacks
is assumed attack free, intrusions similar to the ones present in the training
data will be accepted as normal patterns, resulting in inaccurate models and
consequently, an increment in the number of misdetections.



Recently, different authors proposed the use of unsupervised algorithms
for dealing with datasets presenting not only normal traffic but also a consid-
erable number of attacks (Eskin et al., 2002; Feng et al., 2005; Laskov et al.,
2004). This situation could be considered more suitable than using datasets
with only normal traffic instances. In this sense, SVM for novelty detection
(Tax & Duin, 1999; Scholkopf et al., 2001) was proposed as an alternative
approach with a significant success rate.

Unfortunately, as noticed by Eskin et al. (2002), SVM for novelty detec-
tion works under the assumption that the number of normal traffic instances
vastly outnumbers the number of anomalies. Eskin suggests datasets with a
proportion of at least 98.5% of normal traffic.

To the best of the authors knowledge, there is no study which confirms the
number of attacks laying under such low proportion. Informal observations of
real traffic however, show that it is possible to find periods of time where the
number of attacks presents in traffic could easily outnumber normal traffic
instances. This situation can be observed in commonly used datasets for
intrusion detection evaluation such as the 1998 DARPA dataset (Lippmann
et al., 2000). This dataset was provided by DARPA to the machine learning
community in the context of the 1999 KDD Cup for evaluating different
IDS approaches. Since its publication DARPA dataset has been widely used
by many IDS researchers over the years. Interestingly, the 1998 DARPA
class distribution does not exhibit the required imbalance. Moreover, the
percentage of attacks present in the dataset is around 50%. Certainly, under
these situations algorithms such as SVM for novelty detection could suffer
considerable performance loss.

To deal with these imbalanced class distribution situations a novel ap-
proach is proposed. The idea is to provide a strategy for autonomous labeling
only normal traffic, following the hypothesis that using an autonomous la-
beling tool may help reducing the presence of attacks in the traffic instances
used for training, and consequently improving the performance of SVM for
novelty detection. In this work, SNORT (Roesch, 1999), a very well known
misuse signature-based IDS system, is proposed as a strategy for autonomous
labeling normal traffic.

The rest of the work is organized as follows: in Section 2 main charac-
teristics of SVM for novelty detection are briefly discussed, together with its
application to the traffic network detection field. Then, in Section 3, a new
approach for autonomous labeling normal traffic is presented. In section 4
a set of experiments is conducted on the 1998 DARPA dataset in order to



evaluate the performance of the different approaches. Finally, conclusions
and future work are provided in Section 5.

2. SVM for novelty detection

Since its introduction in the mid-1990s (Boser et al., 1992; Cortes & Vap-
nik, 1995; Vapnik, 1998), The SVM algorithm has been widely used, being
the subject of many articles on classification and other pattern recognition
problems (Lee & Verri, 2002).

SVM approach for classification differ from other classification algorithms
by three important properties. First, its formulation presents an important
theoretical result, proving that the generalization error is minimized when
the margin is maximized, where the margin is defined as the distance of
the solution hyperplane to its closest point (Vapnik, 1998). This property is
unique to SVM and is one of its main advantages when compared to other
classification algorithms. Another important property is that the search for
the maximal margin is a convex (quadratic) optimization problem, i.e., with
only one minima, resulting in an efficient learning stage. In most cases, the
input data points are not separable by the separation surface, so a stan-
dard approach (first introduced for the Perceptron algorithm of Rosenblatt
(1958)), is to project the data points to higher dimension feature space. That
usually affects the generalization error. However, for SVM, it can be proven
(Vapnik, 1998) that for the maximal margin, the generalization error is still
minimal, regardless of the dimension of the feature space. Finally, the for-
mulation of the optimization problem (as shown in the next section for SVM
for novelty detection) can be expressed solely in terms of the dot product
between the feature vectors (denoted its kernel), which further reduces the
computational complexity by permiting an efficient pre-computation of these
quantities.

SVM for novelty detection is a generalization of the core SVM ideas for
classification problems. Traditional SVM approaches for classification uses
as input training data consisting of a mixture of data labeled by two classes.
In the intrusion detection problem this would consist of data labeled both as
attack and non-attack. The model constructed by these approaches discrimi-
nates the input space in two infinite regions, one per class, using a hyperplane
as a separation surface. In contrast, the main idea in SVM for novelty detec-
tion (Tax & Duin, 1999; Scholkopf et al., 2001) is to use as input a description
of only the normal class of objects (non-attack in IDS), assuming the rest
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as anomalies (in our problem, the attacks). The model constructed by this
approach discriminates the input space in a finite region containing the nor-
mal objects, while all the rest of the (infinite) space is assumed to contain
the anomalies.

The SVM for novelty detection variants appear in the literature of in-
trusion detection with different names, which could lead to some confusion.
In some cases they are referenced as SVM one-class algorithms. SVM for
non supervised learning is another widely used name by some authors. Al-
though, all of these names describe important characteristics of this kind of
algorithms, in this work the term SVM for novelty detection will be preferred.

Two major approaches were proposed for generalizing SVM to the prob-
lem of novelty detection. One approach, proposed by Tax & Duin (1999), is
based on the idea of finding a hypersphere with center ¢ and minimal radius
R containing the normal data, discriminating all other data not in the sphere
as anomalies. As in standard SVM approaches, the discriminating surface
(the sphere), as well as the data, may be mapped into a higher dimension
feature space by a kernel function (see more details in next section). Another
approach proposed by Schélkopf et al. (2001) tries to separate the normal
data points from the anomalies by finding the hyperplane that is maximally
distant from the origin. When a RBF kernel is used, it was shown that the
two approaches converge to the same solution (Campbell, 2000). In this work
the Tax’s approach is preferred, which is explained in more detail below. For
a description of Scholkopf’s hyperplane formulation the reader is referred to
Scholkopf et al. (2001).

2.1. SVM based on the hypersphere formulation

The sphere formulation has an intuitive geometric idea: the normal data
{x;,i = 1,..., N} can be concisely described by a sphere, of center ¢ and
radius R, first projecting the data to some high-dimensional feature space by
the mapping ®, obtaining the projected set of points {®(x;),i = 1,..., N},
and assuming the projected normal points lie within the sphere. A graphical
example of this can be observed in Fig. 1. Non-separability of the training
data in the feature space can be addressed by introducing slack variables
{&,i=1,..., N}, one per data point x;. The use of slack variables allows
for some (projected) normal data points to lay outside the sphere. Although,
this may lead to a number of (projected) anomalies lying within the sphere
as well.



Figure 1: The geometric representation of the sphere formulation. The sphere
of center ¢ and the minimal radius R which enclose all the normal data points

The main insight of the hypersphere formulation is to note that the mar-
gin maximization approach of standard SVM maps into the hypersphere
formulation by finding, among all possible hyperspheres that encloses all the
normal data points, the one with smaller volume. Formally,

. 2 1
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where besides of minimizing the radius R, it minimizes the size of the slack
variables. The constant v gives the trade-off between the two terms: volume
of the sphere and the number of target objects rejected.
To enforce the fact that normal points, minus their non-negative slacks,
lies within the sphere, the above minimization is subject to the following
constraints:

(D(x;) —¢) (B(x;) —c)T < R*+¢ (2)
& = 0.
for all i = 1,..., N, where the L.h.s. of the first constraint is no more than

the distance of the feature vector ®(x;) to the center c of the sphere.
To solve the constraint optimization problem (1) subject to constraints
(2), the Lagrangian is minimized
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with Lagrange multipliers a; > 0 and ; > 0. The standard trick in SVM that
leads to a formulation based on kernels consists on minimizing the Lagrangian
on all but the the Lagrange multipliers «;. That is, the parcial derivatives
w.r.t. R, c, & are set to zero, to obtain the new constraints:

N

for which, after resubstituting in the Lagrangian (3), a new Lagrangian over
«; 1s obtained

Liew) = Zai(q)(xi)-@(xi))—Zaz’%(@(xi)-@(xj))
= ZO&Z‘]{?(XZ',XZ') — ZO&Z'OKJ']{?(XZ',X]‘).

In the above equation one can see that the mapping ®(x;) of datapoints
x; to a high-dimensional feature space can be formulated solely by the kernel
function k(x;,x;), a function over the inner product ®(x;)- ®(x;) in the fea-
ture space. Commonly used kernels are linear, sigmoid, polynomial, among
others.



One of the most successful kernels used in the field of network traffic
anomaly detection is the radial basis function (RBF), shown in Eq.(5)
k(xi7 X]) = 6_7(¢(xi)_¢(xj))2’ (5)
where v = Jiz . Notice that ¢ indicates the width, or spread, of the kernel
function.
Finally, the learned model is used to classify between normal and anoma-
lous traffic simply by computing whether a new object z is within the sphere,
i.e., its distance to the center of the sphere is smaller than the radius:

(@(2) — <) (0(z) — ) =
k(z,z)— 2 Z a;k(z,x;) + Z aiak(z,x;) < R? (6)

Z‘?j

where c¢ is equated with ). a;®(x;) according to Eq.(4). To compute the
above inequality, it is necessary to find a way to obtain the radius R. For
that, first note that the above inequality corresponds with the first constraint
in Eq. (2). The Lagrangian optimization theory states that for those objects
for which the constraint is satisfied with an equality, the Lagrange multipliers
satisfy «a; # 0. Those objects are called the support vectors. To compute R
then, Eq. (6) must be solved for any of these support vectors.

2.2. Previous work on SVM for novelty detection in intrusion detection

Different authors (Eskin et al., 2002; Li et al., 2003; Laskov et al., 2004)
have used SVM for novelty detection in the intrusion detection field. The
work of Eskin et al. (2002) is one of the first on the subject. They propose
a geometrical framework to improve the performance of different kind of un-
supervised learning algorithms among which SVM is found. Laskov et al.
(2004) used the same geometrical framework presented by Eskin and they
provide a modification to SVM for novelty detection which outperforms tra-
ditional variants. Both works use the KDD99 DARPA dataset for training
and evaluating their approach.

The work of Li et al. (2003) proposes an improvement on SVM for novelty
detection applied to the intrusion detection field. The idea is basically to
extend hyperplane-to-origin approach of Schélkopf et al. (2001). In their
article, they assume that not only the origin lies in the second class but
also that all data points close enough to the origin are to be considered as
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outliers or anomaly data points. For the evaluation process of their approach
the authors use the 1999 DARPA dataset.

It seems clear that all these authors are aware of the limitations of the dif-
ferent SVM approaches for anomaly detection. As mentioned by Eskin, these
algorithms will work reasonably well under the assumption that the number
of normal traffic instances vastly outnumbers the number of anomalies. More-
over, in the experiments conducted by Eskin et al. (2002) they assume that
a high imbalance in class distribution is a common feature in network traffic
and they have altered the original data sets to fit into this assumption. Un-
fortunately in practice, this assumption is not always valid. There are many
situations in which for specific periods of time, the presence of intrusions
vastly exceeds the number of normal traffic instances. For instance, when a
new vulnerability is discovered and it has been widely announced, it is pos-
sible to find attacks exploiting these vulnerability encompassing a extremely
high percentage of the network traffic. Thus, it seems that anomalies in net-
work traffic have a bursty behavior. This can be observed in the DARPA
dataset, where the percentage of anomalous traffic found in some weeks is
less than 0.5% but in some other weeks the percentage raises to 70%. How-
ever, this dataset may not be representative of the actual imbalance in a
production environment. The authors are unaware of a thorough study that
confirms these claims.

It seems clear that under real traffic situations it is not always possible to
guarantee the required class distribution for training sets, as needed by SVM
approaches. A possible solution is to rely on experts for removing known
attacks from the training set, until the desired imbalance is reached. This,
however, would be an extremely expensive and tedious task. Perhaps, a more
appealing idea consist of using an autonomous labeling tool for removing a
considerable number of well-known attacks.

3. Proposed approach: Autonomous labeling of normal traffic us-
ing SNORT.

An autonomous labeling approach is proposed for dealing with non-imbalanced
class distributions, The idea behind this approach is to provide mechanisms
for excluding well-known attacks from the dataset. Well-known attacks are
the ones whose behavior have been deeply analyzed and a set of rules haven
been built for describing such behavior. There are many tools for detect-
ing well-known attacks. In particular, recognizing well-known attacks is a



common task done by traditional signature-based IDS. Thus, the use of IDS
as an autonomous labeling tool can provide a good mechanism for reducing
the number of attacks in the training dataset required for SVM for novelty
detection algorithm.

The complete process is graphically represented in Figure 2. Given a
dataset containing unlabeled network traffic instances, an autonomous label-
ing tool is used for labeling the dataset. Then, traffic instances labeled as
attack are discarded whereas the remaining ones are labeled as presumably
normal and used for training SVM for novelty detection.

Notice that there is no guarantee the labeling process could be done
without errors. However, the assumption is that after the attacks recognized
by the autonomous labeling tool are removed from the training data set, the
number of normal traffic instances will be sufficiently larger than the number
of attacks. This way, class distribution becomes unbalanced or at least closer
to the suggested imbalance.

It only recognizes

—_— well-known attacks —_—
Unlabeled Dataset Labeled Dataset
Autonomous Network Traffic
—> | labeling tool instances
labeled as
. attacks
Network traffic Used
instances for training
Network traffic
SVM instances
for novelty | <€ jabeled as
detection normal
)

~—_————o

Figure 2: Training process using an autonomous labeling tool on a dataset

The autonomous labeling tool proposed in this work is SNORT (Roesch,
1999), a light and fast intrusion detection system developed by Martin Roesch
in 1999. Over the past years, its popularity grew considerably, becoming a
de-facto standard in the security network field. SNORT is composed by
several fast pattern matching algorithms and a very complete and updated
rule database. In recent versions, SNORT has included preprocessors for flow
tracking and IP defragmentation which has improved its overall detection
performance.

However, SNORT is far from being a complete solution to the intrusion
problem. As any other misuse signature-based IDS, SNORT fails to recognize
many attacks which are not described by a rule of its database. Another well
known problem is that in many cases, SNORT can raise an extremely high
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false alarm rate, leading to production of different approaches for reducing
SNORT false alarm (Tjhai et al., 2008).

The main hypothesis of this work is that although SNORT may present
a considerable number of misclassifications, it still can be useful for reducing
the proportion of attacks in the dataset and consequently producing poten-
tially better results for SVM for novelty detection.

4. Experiments

This section evaluates the performance of the SVM for novelty detection
when SNORT is used as an autonomous labeling tool. A set of experiments
are conducted comparing performance of the proposed approach (denoted
here as SbSVM) against the standard SVM algorithm for novelty detection.
A comparison against Standalone SNORT performance is also conducted in
order to establish in which situations SbSVM performance is below perfor-
mance shown by standalone SNORT. In those situation, the use of SNORT
by itself will be more convenient and the SbSVM approach should be avoided.

4.1. Dataset description

The experiments were conducted over five weeks of the 1998 DARPA data
set (Lippmann et al., 2000), widely used for intrusion detection evaluation.
DARPA dataset contains around 1.5 millions traffic instances with almost
50% of them labeled as attacks.

For describing the input data, a total of six fields from a network traffic
instance were selected: connection time, protocol type, source port, destina-
tion port, source IP address and destination IP address. These fields have
been used in previous works (Catania & Garcia Garino, 2008) and have pro-
vided a good trade off between overall performance and the computational
effort needed for training process.

Selected fields are represented according to Table 1 resulting in a total of
14 attributes used for training SVM for novelty detection alternatives.

To improve SVM performance and to avoid possible numerical problems,
features are normalized between the interval [0,1] as suggested in Hsu et al.
(2008).

4.2. Dataset sampling

A randomly selected 1% subset of the DARPA data is used for the training
process, whereas another 0.5% subset is used for testing purposes, following
standard ratios used in classification problems.
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Table 1: Features representation

Feature Size
Connection time 3
Protocol Type 1
Source port 1
Destination port 1
4
4

Source IP address
Destination IP address

For the training process, standard SVM approach uses the whole 1%
including both normal and anomalous traffic. In the case of the SbSVM
approach, as mentioned in section 3, attacks recognized by SNORT are re-
moved, resulting in a ratio smaller than 1%. On the other hand, as SNORT
does not require a training process, only an evaluation process is carried out
against the 0.5% subset.

In order to evaluate the influence different attack distributions have on
classifiers performance, experiments are conducted against datasets contain-
ing distributions with 1.0% 2.0%, 5.0%, 10%, 20%, 50%, 60% and 80% of
attacks. The 0.01 fraction of the whole DARPA dataset (i.e., 1% of it) with
a proportion of attacks p% is sampled from the whole dataset in two steps,
one that samples attacks from the set of all attacks, and another for sampling
the normal data from the set of all normal traffic instances. To maintain the
p% ratio of attacks in the resulting 1% dataset, a fraction p x 10~* of attacks
are randomly and uniformly sampled from the set of all attacks. Similarly,
a fraction of (1 —p) x 107" is randomly and uniformly sampled from the set
of all normal traffic instances.

For statistical significance a total of 20 repetitions of the experiments are
conducted using different randomly and uniformly selected subsets for each
attack distribution.

4.3. Performance metrics for IDS evaluation

Standard performance metrics for IDS evaluation are used for compar-
ing the different approaches discussed. These metrics correspond to Attack
Detection rate (DR) and False Alarm rate (FA).

DR is computed as the ratio between the number of correctly detected
attacks and the total number of attacks. Whereas FA rate is computed as
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the ratio between the number of normal connections that are incorrectly
classified as attacks and the total number of normal connections.

4.4. Standalone SNORT evaluation

Before evaluating the proposed labeling approach, it is important to eval-
uate the classification performance (in normal traffic and attacks) of stan-
dalone SNORT. Notice that the version of SNORT used in this experiment
is 2.8.3.2.

From a total of thousands of rules in the SNORT rule-base, only 32
matched against the whole 5 weeks of the DARPA data set. Therefore, for
improving further computations the unmatching rules were removed from
SNORT’s rule-base. The complete rule-base is shown in Table A.5.

Table 2 shows averaged results for DR and FA, as well as their respective
standard deviations (sd) over the 20 repetitions. It can be observed that
averaged results for FA and DR obtained by SNORT do not present a signif-
icant variation as attack distribution grows. These results can be expected
because SNORT uses the same set of rules over all of the attack distribu-
tion datasets. The performance presented by SNORT on DR for each attack
distribution is around 87% and in the case of FA, the obtained value vary
slightly around 4%.

Table 2: SNORT performance evaluation on DARPA data set with different
attack distributions

Attack Distribution (%) DR (%) sd FA (%) sd

1 87.15 409 445 0.21
2 86.59 3.03 443 0.28
b} 8r.13  1.71 437  0.20
10 86.67 1.18 441  0.24
20 86.88 1.07 435 0.31
50 86.84 0.59 438  0.27
60 87.00 0.45 447 040
80 87.02 043 452 047

Despite a number of misclasifcations, SNORT shows a very accurate per-
formance on attack detection rate for the DARPA dataset. Therefore, it is
expected that SbSVM can bring class distribution closer to the imbalance
required by SVM algorithms for novelty detection.
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4.5. Fvaluation of the SNORT-based autonomous labeling for SVM novelty
detection

The SVM implementation used in these experiments is an extension of
the libsym (Chang & Lin, 2001) that supports the hypersphere formulation
(Russo, 2008).

An RBF kernel is chosen for both approaches (SbSVM and standard
SVM). The use of an RBF kernel implies finding an appropriate value for
v (see Eq. (5)). Therefore, the performance of SbSVM and the standard
SVM algorithm is evaluated for different combinations of v and the constant
v (see Eq. (1)). Selected values for v and v are shown in Table 3. Although
the selected values are far from a complete parameter set, they include a
considerable parameter range, suitable for evaluating the proposed approach.
Results provided by SbSVM are compared with the ones computed using
standard SVM for novelty detection, as well as the ones provided by the
standalone SNORT classifier.

Table 3: Selected values for v and v

v 00 00l 01 02 027 04 06 07 09 10
vy 1 2 4 8 12 20 35

FA and DR values for each v and v combination are used for generating
ROC curves (Fawcett, 2006) for both approaches. Figure 3 and Figure 4
show ROC curves together with results from SNORT standalone classifier.
In the case of standalone SNORT however, evaluation results are plotted
only as one dot on the figures (as it is independent of 7 and ) whereas those
~v and v combinations which performance is close to standalone SNORT are
also plotted on the ROC curves with filled squares.

Figure 3 shows that under 1%, 2%, 5% and 10% attack distributions,
performance exhibited by SbSVM clearly outperforms standard SVM results.
On the one hand, for dataset containing 1% and 2% of attacks, standard SVM
presents most of the results above random guess line. However, this behavior
changes for the remaining datasets, where most of the results remain under
guess line. Instead, the proposed SbSVM approach does not suffer from this
behaviour and maintains all its results above random guess line. On the other
hand, classification performance shown by standard SVM clearly decreases
as attack distribution grows, whereas in the case of SbSVM, only a slightly
performance loss can be appreciated as attack number grows up to 10%.
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Figure 3: ROC curves under 1%, 2%, 5% and 10% attack distribution
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Figure 4 shows remaining ROC curves for datasets under 20%, 50%,
60% and 80% attack distribution. Despite the appreciable performance loss
for datasets with attack distributions above the 20%, the proposed SbSVM
approach continues outperforming standard SVM. In this sense, it can be
observed that for datasets under 20% attack distribution, standard SVM
presents only two parameter combination above random guess line, whereas
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for the remaining dataset distributions, ROC curves for standard SVM de-
crease far below random guess line. In contrast, the proposed S6SVM main-
tains all its results above random guess line.

Another noticeable disadvantage observed by the standard SVM algo-
rithm is that all the ROC curves show a variable behaviour with abrupt
performance changes along different parameters combination. A situation

which is not exhibited by SbSVM.
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Figure 4: ROC under 20%, 50%, 60% and 80%
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Table 4 shows detailed performance information about the three parame-
ter combinations that present the best trade off between DR and FA for each
approach on every attack distributions. In other words, the highest values
for DR while keeping FA values as low as possible.

DR values higher than 87% together with a FA values lower than 10%
are considered suitable for real traffic situations (values very close to the per-
formance showed by SNORT in Section 4.4). Those parameter combinations
whose performance is close to these values are highlighted on the table. (It
is worth to notice that these values correspond to the filled squares plotted
in Figure 3 and Figure 4).

Table 4: Classification performance under different attack distribution

(a) SLSVM (b) SVM for novelty detection

% v v DR% sd FA% sd % v v DR% sd FA% sd

0.10 2.00 99.65 0.74 8.84 0.54 0.27 2.00 99.65 0.86 23.64 0.67

1% 0.10 4.00 98.40 141 6.51 0.42 1% 0.27 1.00 9896 1.15 23.51 0.63
0.10 6.00 97.08 191 5.66 0.36 0.20 1.00 97.64 249 17.00 0.57

0.10 2.00 98.55 1.09 8.78 0.42 0.40 2.00 99.86 0.28 35.86 0.77

2% 0.10 4.00 96.69 224 6.50 0.33 2% 0.40 1.00 99.69 0.34 33.82 0.65
0.10 6.00 95.03 2.54 5.71 0.26 0.27 1.00 9748 1.12 2294 0.55

0.10 2.00 94.81 124 8.62 0.55 0.60 1.00 9994 0.11 51.85 0.79

5% 0.10 4.00 92.49 1.37 6.46 0.36 5% 0.60 2.00 9749 222 52.85 0.49
0.10 6.00 90.84 1.37 5.63 0.28 0.40 1.00 93.27 1.86 32.40 0.53

0.10 2.00 91.31 1.19 8.54 0.32 0.70 1.00 99.96 0.08 60.26 0.60

10% 0.10 4.00 89.68 1.20 6.41 0.39 10% 0.60 1.00 94.10 0.98 49.63 0.57
0.10 6.00 88.51 1.38 5.57 0.37 0.70 2.00 &83.55 223 61.82 0.61

0.10 2.00 89.80 081 7.73 0.34 0.70 1.00 77.10 1.30 60.99 0.66

20% 0.10 4.00 88.76 0.87 5.83 0.31 20% 0.60 1.00 64.89 1.59 51.57 0.62
0.10 6.00 87.01 1.05 5.18 0.32 0.70 2.00 58.07 1.59 65.63 1.01

0.10 1.00 87.43 056 7.90 0.58 0.60 1.00 3999 086 68.31 0.88

50% 0.10 2.00 87.64 0.83 6.73 0.61 50% 0.60 2.00 3154 0.87 74.80 0.76
0.20 8.00 88.38 0.63 11.63 0.69 0.60 35.00 30.14 1.13 79.06 0.70

0.20 4.00 88.67 0.33 1394 0.81 0.70 35.00 52.67 1.11 86.98 0.63

60% 0.20 6.00 87.98 0.47 1222 0.70 60% 0.70 20.00 50.28 1.21 87.76 0.59
0.20 800 87.09 044 11.56 0.74 0.70 12.00 47.92 1.20 88.00 0.55

0.20 2.00 88.76 2.62 2297 17.72 0.40 2.00 2586 17.02 82.79 4.73

80% 0.27 6.00 88.60 2.68 26.31 16.95 80% 040 4.00 2554 17.09 83.10 3.99
0.20 1.00 88.55 2.67 23.02 17.73 0.40 8.00 2547 17.11 83.63 3.86

In the case of the dataset under 1% attack distribution, standard SVM
provides barely good enough results. For the first two parameter combina-
tions, a near-optimal detection rate is obtained. Unfortunately together with
FA values around 23%, which are considered excessively high for practical
uses. More appropriate are the results provided by the third combination,
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where DR value remains high (97%) and FA value decreases to 17%. Beyond
this attack distribution, standard SVM presents a significant performance
loss. Moreover, in all these remaining attack distributions, none of the re-
sults obtained by SVM exhibit a classification performance suitable for real
traffic situations.

On the other hand, the SbSVM approach provides considerable better
results. From dataset from 1% to 50% SbSVM shows DR values from 87%
to 99% with FA values oscillating from 5.5% to 8.8%, which as was men-
tioned in previous paragraphs, can be considered suitable for practical uses.
For datasets under 60% attack distribution, DR values remain around 88%,
however FA values oscillate around 12%. Degradation of FA values is even
more noticeable on datasets under 80% attack distribution where FA values
raise to an useless 26%.

Despite the fact that comparing the proposed approach against SNORT
classifier is not the main focus of this work, it is worth to notice that many
of the parameter combinations for the SbSVM approach shown in Table 4
present improvements over standalone SNORT classification performance,
demonstrating generalization of SVM over SNORT’s classifcation. SbSVM
shows better-than-SNORT results for datasets with attack distributions up
to 10%, where DR values oscillate from 88% to 97% at the expense of a slight
performance loss on FA (around 5%).

On the other hand standard SVM could not provide a classification per-
formance close the one exhibited by SNORT under any attack distribution.

5. Conclusions

Experiments showed that the overall performance of SVM based on the
hypersphere formulation on the 1998 DARPA dataset decreases to unpracti-
cal values for datasets with more than 2% of attacks. These results seem to
confirm what has been already discussed in Section 2.2 and references then
on. When a high number of attacks are included in the dataset, SVM algo-
rithms for novelty detection are not suitable for finding an accurate domain
description. Thus, a highly imbalanced class distribution is needed in the
dataset to achieve a proper performance.

The use of an autonomous labeling tool appears to be a promising strat-
egy for handling classes without the required distribution. The proposed Sb-
SVM approach provides significant better results than standard SVM. Major
benefits are shown beyond 2% attack distribution, where standard SVM FA
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shows values between 50% and 80% whereas SbSVM maintains values around
28%. Moreover, in the case of DR, SbSVM shows an improvement from two
to eight times compared with the ones obtained with standard SVM along
different attack distribution datasets.

The proposed SbSVM approach appears to be more robust along not
only different attack distributions but also different parameter combinations.
SbSVM maintains all of its results above random guess line, whereas standard
SVM shows a variable behaviour with abrupt performance changes along over
all attack distribution datasets.

The obtained results have shown that for datasets containing up to 50%
of attacks, the autonomous labeling approach using SNORT has improved
not only SVM algorithms for novelty detection but also standalone SNORT.
For dataset with less than 20% attack distribution, SbSVM has improved
more than 10% DR value while FA value has increased around 1%. Smaller
but appreciable improvements have also been shown on dataset between 20%
and 50%, where SbSVM has outperformed by a 2% SNORT DR. Beyond this
point, using standalone SNORT seems to be the more convenient strategy.

The performance of the SbSVM approach in real traffic situations still
remains unknown. Consequently, experiments will be carried out to overcome
this issue in the future.
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Appendix A. Snort Complete Rule Base
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Table A.5: Snort Rule set matched against 5 weeks of 1998 DARPA dataset

SID Rule Description

[1:1156:10] WEB-MISC apache directory disclosure attempt
[1:1418:13] SNMP request tcp

[1:1419:12] SNMP request tcp

[1:1420:13] SNMP request tcp

[1:1421:13] SNMP AgentX/tcp request

[1:1445:5]  POLICY FTP file_id.diz access possible warez site
[1:1762:8]  WEB-CGI phf arbitrary command execution attempt
[1:1842:20] IMAP login buffer overflow attempt

[122:1:0] TCP Portscan

[122:5:0] UDP Portscan

[1:269:11]  DOS Land attack

[1:270:9] DOS Teardrop attack

[1:3151:4] FINGER / execution attempt

[1:323:6] FINGER root query

[1:3274:7]  TELNET login buffer non-evasive overflow attempt
[1:330:10] FINGER redirection attempt

[1:332:9] FINGER 0 query

[1:335:6] FTP .rhosts

[1:359:6] FTP satan scan

[1:469:4] ICMP PING NMAP

[1:491:8] INFO FTP Bad login

[1:498:7] ATTACK-RESPONSES id check returned root
[1:527:10] BAD-TRAFFIC same SRC/DST

[1:546:6] POLICY FTP "CWD ’ possible warez site
[1:547:6] POLICY FTP "MKD ’ possible warez site
[1:584:13]  RPC portmap rusers request UDP

[1:598:13]  RPC portmap listing TCP 111

[1:612:7] RPC rusers query UDP

[1:613:6] SCAN myscan

[1:646:6] SHELLCODE sparc NOOP

[1:716:15] INFO TELNET access

[1:718:9] INFO TELNET login incorrect
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