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Abstract

Background: Muscle activation level is currently being captured using im-
practical and expensive devices which make their use in telemedicine settings
extremely difficult. To address this issue, a prototype is presented of a non-
invasive, easy-to-install system for the estimation of a discrete level of muscle
activation of the biceps muscle from 3D point clouds captured with RGB-D
cameras.

Methods: A methodology is proposed that uses the ensemble of shape
functions point cloud descriptor for the geometric characterization of 3D
point clouds, together with support vector machines to learn a classifier that,
based on this geometric characterization for some points of view of the biceps,
provides a model for the estimation of muscle activation for all neighboring
points of view. This results in a classifier that is robust to small perturba-
tions in the point of view of the capturing device, greatly simplifying the
installation process for end-users.

Results: In the discrimination of five levels of effort with values up to
the maximum voluntary contraction (MVC) of the biceps muscle (3800 g),
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the best variant of the proposed methodology achieved mean absolute errors
of about 9.21 % MVC — an acceptable performance for telemedicine settings
where the electric measurement of muscle activation is impractical.

Conclusions: The results prove that the correlations between the exter-
nal geometry of the arm and biceps muscle activation are strong enough to
consider computer vision and supervised learning an alternative with great
potential for practical applications in tele-physiotherapy.

Keywords: biceps activation estimation, 3d point clouds, support vector
machines, ensemble of shape functions, biomechanics, tele-physiotherapy

1. Introduction

This paper tackles the problem of remotely estimating the level of acti-
vation exerted by the biceps muscle when subjected to external forces into
a posture of isometric contraction. Our approach aims to solve the prob-
lem for typical tele-physiotherapy conditions: indoors, controlled lighting
for the span of the study, easy-to-install hardware, and fast calibration of
the software. To achieve this, the proposed system autonomously estimates
the discrete activation level based on computer vision plus machine learning
techniques when given 3D point clouds of the arm captured by a commercial
off-the-shelf RGB-D capturing device such as the Microsoft Kinect™. The
approach has been designed with easy installation in mind, so emphasis has
been given to producing estimations that are robust to imprecise hardware
mountings, so robust that the system can be installed even by the patient
(whenever the person’s medical condition allows) with only a handful of train-
ing examples to calibrate to different patients. The approach works under the
principle that the activation of a muscle is physically expressed by changes
in the geometry of the external (visible) muscle surface. It proposes a su-
pervised learning approach, namely a support vector machine (SVM) [1, 2],
to learn the mapping between the geometric features of the muscle surface
— characterized by the ensemble of shape functions point cloud descriptor
[3] computed for the point clouds of the muscle — and the activation level
for each patient’s biceps muscle. A supervised learner provides the benefit
of generalizing to unseen situations — in this case a generalization to new
measurement viewpoints — caused by potential misplacements of the appa-
ratus during setup at the beginning of each exercise session, or by involuntary
movements of the arm during the measurement process.
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The present work has been inspired by the recent growth in tele-medicine
and tele-physiotherapy [4, 5, 6, 7] and constitutes an attempt to fulfill the
need for remote muscle activation sensing [6, 7, 8]. Currently, muscle activa-
tion is measured by electromyography (EMG) [9], a solution that although
highly accurate, requires specialized, expensive, and intrusive equipment de-
pendent on complex installation procedures by specialized personnel to at-
tach electrodes to the body, thus strongly limiting its practicality in many
tele-physiotherapy exercises. Instead, the proposed approach uses unobtru-
sive off-the-shelf equipment, no more difficult to install and train than some
console video-games, at the expense of lower precision in the estimation of ac-
tivation level, but precise enough for many existing physiotherapy exercises.
The literature corroborates the existence of some physiotherapeutic exercises
requiring the monitoring of muscle activation at discrete values that allow
some rough level of imprecision, making them suitable for this approach.

One such exercise is that known as hold-relax, contract-relax and hold-
relax with agonist contraction, a set of important exercises in rehabilitation
programs [10]. In all these exercises, monitoring is required to control the
maximum intensity of muscle contraction as well as the duration of muscle
activation, avoiding efforts longer than the physician-prescribed percentage
of maximum voluntary contraction — MVC (the maximum possible contrac-
tion that a subject can produce in the muscle by himself with no external
forces). At present, in tele-rehabilitation sessions with this type of exercises,
monitoring is circumscribed to human measurement of muscle activation (e.g.
the physiotherapist or even the patient), as in most cases it is impossible to
operate, or even in some cases transport, an EMG for such simple monitoring
scenario. As expected, however, this human measurement is not only highly
imprecise, but when there is no assistant, it requires the patient to be wor-
ried about monitoring the exercise, distracting him from the rehabilitation
task. The proposed approach is suitable to address such scenarios, where the
system could be calibrated to detect the maximum activation indicated for
the patient’s treatment (and, possibly, some other intermediate activations
for early warning purposes). This calibration could be done in the presence
of a trained assistant during the setup session and left to the autonomous
system to detect over-activation in future sessions.

A second case under consideration is a common clinical task in reha-
bilitation consisting in the assessment of muscle health by using the simple,
well-known manual muscle test. This test consists in the therapist measuring
the contraction level of a muscle when subjected to predefined, specific pos-
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tures and movements. It is based on a subjective grading system in which the
level of contraction is measured grossly by touching and feeling the muscle
[11, 12]. In a tele-health scenario, direct touch is impossible, an EMG is not
feasible in most cases, and verbal transfer of subjective measurement based
on an assistant’s touch would be highly inaccurate. The proposed method
could provide a way to make the remote execution of this test possible by
calibrating the system with the therapist’s subjective perception of contrac-
tion during a first face-to-face session between therapist and patient. Once
calibrated, the system could perform the measurements remotely from the
patient’s home.

These two cases are just examples of the widespread use of muscle acti-
vation in physiotherapy, stemming from the key role it plays in modeling the
biomechanics of the musculoskeletal human system, for which it is required,
together with joint kinematics and the kinetics (external forces) exerted on
the body [13, 14, 15, 16, 17, 18]. Its importance for medical care should
not be understated, as these biomechanical models provide the mechanical
structures, laws, and phenomena essential for human balance and movement,
allowing the identification of harmful movements, over-exertions, awkward
postures, musculoskeletal disorders, and optimal movements, among other
states of the human body with a high impact on health. This results in
the application of this approach beyond tele-physiotherapy in disciplines like
occupational medicine [19], ergonomics [20], and sports [21], among others.

An autonomous system for visual sensing of the activation level of hu-
man muscles is an open problem with only a few published contributions
(described in some detail in the following section) mostly focused on char-
acterizing the visual aspects of muscle contraction. To the best of the au-
thor’s knowledge, however, no work has been done to use this information
in measuring muscle activation level. Some work has been performed on
autonomous visual sensing of other aspects of human biomechanics, such as
joint kinematics [22], presenting solutions so advanced that there are even
existing commercial applications [23, 24], and kinetics, which is currently an
active line of research with several ongoing efforts to achieve a final solution
[25, 26, 27, 28, 29, 30, 31].

The rest of this paper is structured as follows. The methodology for solv-
ing the problem is included in Section 2. Section 3 presents the experiments
performed for empirically proving the effectiveness of the method. A dis-
cussion of results and a comparison of this work with other related work is
included in Section 4. Finally, conclusions and future work are outlined in
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Section 5.

2. Materials and Methods

The main component of the proposed method is a computational proce-
dure for the estimation of muscular activity based on a supervised learning
algorithm for mapping the geometric features of the muscle’s external sur-
face to muscle activity. The following section introduces some basic concepts
and procedures of these technologies, followed by a detailed explanation of
the proposal for using them to solve the problem of remote measurement of
biceps activity.

2.1. Background knowledge

This sub-section presents the basics of the computer science technologies
applied in this research necessary to understand how the method works. Sec-
tion 2.1.1 explains the functioning of supervised machine learning techniques
used to estimate activation levels. Finally, Section 2.1.2 presents the opera-
tion of computer vision techniques used to characterize the method’s input
point clouds.

2.1.1. Supervised learning

Supervised learning is a technology from the artificial intelligence area
that consists in learning multivariate, non-linear functions inductively. This
work uses classification methods whose functions map the multivariate input
to a discrete-valued variable usually referred to as class. For instance, this
work tackles the measurement of activation in five discrete levels for which
the corresponding classes are named with the labels O0, O500, O1k, O2k
and O4k, respectively.

Supervised learning algorithms construct this function through an in-
ductive process that takes as input a training set of possible inputs to the
function, that is, some assignment of all the variables in the function do-
main paired with the value of the function for that input configuration of
the variables. Common names given to the value of the function are label or
ground-truth for that input vector. Most commonly, they propose a family
of parametrized models and work by searching the space of possible param-
eter values, and therefore, the space of all models in the family. This results
in a model whose output better matches the expected output signaled by
the labels. Due to insufficient data or noisy labels, the model learned may
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differ from the true underlying classifier. Since in practice the underlying
classifier is unknown, the learned model can be evaluated by testing it em-
pirically against some labeled examples left out of the training set. Such set
is called test set for obvious reasons. The testing proceeds by running the
classifier over each (labeled) example in the test set and comparing the out-
put produced by the learned model (hereon called predicted label) for the nth

example denoted by w̃n, with the label representing the ground-truth value
of the classifier (hereon called true label) for the nth example denoted by wn.
All these comparisons, one per test example, are aggregated into different
kinds of possible performance measures that highlight different qualities of
the learned model. The present work considers the Mean Absolute Error
(MAE) defined by:

MAE(testset) =

∑|testset|
n=1 |wn − w̃n|
|testset|

(1)

That is, the absolute value mean of the differences between the true and
predicted weights. An advantage of using MAE as a performance measure
is that its value can be measured with the same physical magnitude as the
labels. As explained below, the proposed approach uses weights for labels, so
in this case, MAE would be measured in grams. From this definition, better
performances are reflected by smaller MAE values.

Interestingly, the supervised learning models work regardless of the strength
of non-linearity and dimensionality of the function as well as noise in the
training set; for instance, input examples labeled incorrectly, that is, paired
with values that do not match the value of the function for that input. Most
of the learning algorithms require user given parameters called hyperparame-
ters to distinguish them from the internal parameter that defines the configu-
ration of the technique. Users selecting these hyperparameters may result in
underperformance. An alternative approach used in this work, known as tun-
ing, is to infer them by first splitting the training set into a smaller training
set and a validation set and iteratively navigating through a representative
range of hyperparameter values and to train a model for each value with the
training set, to then compute performance measures with the validation set.
The hyperparameters selected are those that produce the model with the
best average performance of the validation set, over all possible splits.

The proposed work suggests using one of the most effective shallow clas-
sifiers: Support Vector Machines (SVM). SVM belongs to the family of lazy
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classifiers that require the memorization of training examples, but in the
case of SVM, it requires only the memorization of a sparse set of examples,
called support vectors [1, 2]. The algorithm proceeds by constructing a hy-
perplane that optimally separates the decision boundaries for feature vectors
of different classes. These feature vectors may have been projected to spaces
of higher dimensionality through a kernel function, if they are not linearly
separable in their own space. For this work, the linear kernel was selected
against two alternatives: radial basis and polynomial kernels [2], discarded
through preliminary experiments (results not shown). Intuitively, a good
separation that maximizes hyperplane generalization power is achieved by
maximizing its margin, defined as the perpendicular distance between deci-
sion boundaries. This approach uses the SVM implementation provided in
the caret package of the R programming language. For the final version of
the proposed approach, a value of 0.002 was chosen for hyperparameter C
— the strength of the penalty for misclassified examples — obtained from
preliminary tuning.

2.1.2. Geometric descriptors

The proposed approach for supervised learning uses visual information
of the muscle surface as input. To produce a meaningful model, however,
one must transform the raw visual information, that is, the 3D point cloud
capture of the muscle surface, into a format with high discriminative power.
This is usually referred to as features — functions of the raw input whose
outputs are better and more compactly grouped over classes. The best way
to prove that the features produce a compact grouping is to run a good super-
vised learning algorithm. Experimental results later on show the empirical
procedure for selecting the best out of three pre-selected 3D geometric fea-
ture candidates: viewpoint feature histogram (VFH) [32], clustered viewpoint
feature histogram (CVFH) [33], and ensemble of shape functions (ESF) [3].
These are well-known, widely used geometric features that are also conve-
niently implemented in the point cloud library [34] and are briefly described
as follows:

Viewpoint Feature Histogram. (VFH) [32]: This descriptor represents the rel-
ative orientations of normals and distance between each point and the point
cloud centroid. These pairs are encoded with angles between the normals at
the considered points and the normal at the centroid. Each of these angles
and distances are binned into a histogram.
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Clustered Viewpoint Feature Histogram. (CVFH) [33]: This descriptor works
by dividing the object in N disjoint smooth regions, each of which is used
to compute a VFH histogram. The approach behind CVFH is to use object
parts to build the coordinate system while still using the whole view of the
object to compute the descriptor. This descriptor adds a shape distribution
component that encodes information about the relation of each point with
the centroid of its corresponding object region summarized for the entire
object.

Ensemble of Shape Functions. (ESF) [3]: This descriptor is an ensemble of
ten histograms which summarize functions describing characteristic shape
and angle properties of the point cloud, resulting in a vector of 640 variables.
One group of variables is estimated by sampling point-pairs from the point
cloud and building a histogram of the distances between them. Another
group of variables is estimated by tracing the lines between random samples
of point pairs and summing them in a histogram counting the number of
lines on the surface of the point cloud, off the surface of the point cloud, and
partially on the surface of the point cloud. The values of another group of
variables are computed by encoding into a histogram the angles between the
two lines constructed from three random points of the cloud. In like manner,
the final group of vector variables was built by encoding the surface area
constructed with triplets of points and counting their number on the surface,
off the surface, and partially on the surface of the point cloud.

2.2. The proposed approach

This section presents the methodology for the non-invasive estimation of
biceps muscle activation level based solely on visual information about the
external geometric features of arm deformation when subjected to a discrete
set of efforts.

A näıve approach would attempt a manual mapping between the output of
one geometric feature and the different activation levels exerted by the mus-
cle. However, not only it is almost impossible to produce a manual mapping
because of the large dimensionality of the problem (the ESF feature vector
has 640 dimensions), but this mapping is also problematic due to the inher-
ent noise of the signal (e.g., movements of the arm, of the capturing device,
illumination, among others). This results in a non-trivial separation surface
in feature space between the subspaces corresponding to different activation
values. This issue was addressed through an autonomous learning algorithm,
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support vector machines, specialized in automatically producing such a map-
ping, even for complex separating surfaces. To produce good enough map-
pings, this algorithm, as any other supervised learning algorithm, requires a
minimally sufficient number of labeled mapping examples. To achieve this,
a careful capturing setup must be designed to produce accurate and simul-
taneous measurements of both parts of each example. In our scenario this
corresponds to capturing the geometrical features of the muscle surface while
the activation level is being measured.

To capture geometrical features, the proposed approach uses RGB-D de-
vices such as the Microsoft Kinect™ that produce the muscle surface 3D point
cloud necessary to compute ESF geometric features. To produce the acti-
vation measurement, one would immediately consider an EMG measuring
device attached to the biceps. This, however, presents several shortcom-
ings. On the one hand, the electrodes would clutter the image, producing
extra noise that hinders the mapping process. But most importantly, in a
practical tele-health application, the proposed approach requires that the
measurements for training the mapping algorithm be produced for each new
patient — even in remote scenarios — where the transport and setup of an
EMG would greatly increase the expertise level of the required tele-health
assistant. This approach, therefore, proposes an alternative indirect activa-
tion measurement based on the fact that some muscle rehabilitation exer-
cises require isometric contractions of the muscle [10], mainly after surgery,
as a means of exercising the muscles without forcing them into making a
great deal of movement. These are static contractions of the muscle with
no movements that stretch or shrink it, with the person staying relaxed so
that muscle contraction is the minimum required to hold the desired effort.
In such cases, an external force, such as the weight of an object held by
the hand, would be transferred almost completely to the muscle, resulting in
a direct, monotonous increasing correlation between weight and activation
level of the muscle, as proven for instance in [35, 36]. Thus, to produce the
mapping example, the 3D point cloud of the biceps muscle was captured
while the corresponding hand was holding weights of known value. Those
weight values were taken as a measure of the biceps activation level. More
details of the capture procedure specific to the case of the biceps muscle are
provided in the experimental section.

The procedure just described, although a great improvement over manual
or simplistic map- pings, still presents an important shortcoming. In practice,
the training and later use of the trained system spans days or even weeks,
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making it almost impossible to guarantee a precise alignment between the 3D
point of view of the Kinect while producing the training examples (required
for the SVM to produce the mapping) and the 3D point of view of the Kinect
when it captures biceps 3D point clouds to obtain the activation level later
on in the rehabilitation process. This results in a brittle system, since the
values produced by all three geometric features are sensitive to changes in
point of view, which modifies which parts of the surface are visible and which
are occluded. This results in rather large changes in the 3D point clouds.
To address this serious shortcoming, the approach proposes expanding the
training base of the supervised learning algorithm to a whole new set of points
of view. Under this new training scenario, the set of examples mapping to
some given weight is now expanded to include 3D captures of the muscle
not from one, but from a set of spatially neighboring points of view located
within a sphere, with the expectation that the learned model will now be
robust to measurements from all points of view within that sphere.

In practice, however, this proposal is quite demanding if not completely
unfeasible, as it would not only require that the patient perform an enormous
amount of weight lifting, most probably completely counter-indicated by the
physician, but also a cumbersome re-positioning of the Kinect to all possible
training points of view. Therefore, the approach was extended to consider
a simulated generation of training examples which, based only on captures
from a single point of view, produces data points for all neighboring points
in the sphere through a simulation rather than actual captures. To do this,
based on a small set of 3D point clouds obtained by actual captures, 3D point
clouds were produced that would be observed from the new point of view by
detecting which parts of the arm should not be visible from that new point
of view and removing the corresponding 3D points from the original capture.
For this operation, the Hidden Point Removal (HPR) operator presented
in [37] was used. By computing point cloud geometric features for these
neighboring points of view and by attaching the corresponding weight of the
original captures, a simulated training example is obtained. In principle, new
visible areas that now appear in the new point of view should also be added.
In this setup the problem was solved by simply ignoring those extra areas.
As this only discards useful information, adding it back could only improve
the quality of the model, so the errors resulting from the model trained this
way should be taken as an upper bound.

The following section presents the experimental setup, where different sce-
narios and user given choices for properties of the approach were considered,
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proving the feasibility of the proposed approach for practical applications.

3. Empirical evaluation

This section describes the experiments conducted to prove the effective-
ness of the proposed approach measured in terms of its practicality for solving
the problem of tele-physiotherapy, taking as a guiding principle the two prac-
tical applications described in the introduction: (i) the hold-relax, contract-
relax and hold-relax with agonist contraction exercises that require the mon-
itoring of over-contraction above a therapist-specified maximum value, typi-
cally indicated as a percentage of MVC; and (ii) the manual muscle test that
requires the subjective, touch-based assessment of how much the muscle is
contracted, measured at discrete levels calibrated at the physician’s interest
values. In both cases the measurement is on discrete activation values that
range between no contraction and MVC values. It is, therefore, a rough
activation estimate sufficient to improve a situation in which EMGs are an
unfeasible alternative. To achieve this, five discrete activation values were
considered, produced by weights that roughly cover the range from no weight
lifted at the hand, only the weight of the forearm itself, to a weight at the
biceps muscle equivalent to the typical MVC. According to several studies
[38, 39], the MVC of an adult biceps muscle ranges approximately from 200N
to 350N. For the biceps to produce such a force through a weight at the hand
under isometric contraction (static scenario), one must equate the torques
produced by each (see [40] for details). With the hand at roughly 30cm
and the biceps muscle at 4cm from the elbow joint, there is a factor of 7.5
between these forces for a static scenario corresponding to isometric contrac-
tion. To this, one must add the weight of the forearm itself (approximately
15N) assumed to be applied 15cm from the elbow joint. This adds an extra
torque in the same direction as the hand weight, equivalent to 225Ncm. Such
combination results in a force (weight) of approximately (350× 4− 225)/30
= 39.16N or 3.9kg at the hand to produce 350N of MVC at the biceps. Thus,
five discrete levels were considered within this weight range, roughly dupli-
cating at each step: 0g, 505g, 1340g, 1940g, and 3885g each, hereon named
with the labels O0, O500, O1k, O2k and O4k, respectively. From the above
discussion, it can be inferred that a good performance of the method pre-
dicting these values can be extrapolated to expect good results in practical
cases. However, further testing would be required before implementing this
approach in actual treatments.
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The performance of the proposed approach, as any other supervised learn-
ing algorithm, strongly depends on how well its training set represents the
underlying mapping — in this case, the mapping between the geometric
features of the muscle surface and its level of activity. To assess this perfor-
mance, MAE (Eq 1) is reported in grams for a representative range of possible
training scenarios that depend on several alternative user choices. On the
one hand, the choice of the point cloud descriptor used to generate feature
vectors of the training and testing sets — that is, VFH, CVFH, or ESF —.
On the other hand, choices relative to the simulation based augmentation
of the dataset: the point of view of the captures; the number n of original
captures; the trainRadius of the sphere; and the number N of simulated
neighboring points of view. Each scenario relies on actual captures of the bi-
ceps subjected to efforts of some weight held by the hand. Therefore, the next
section explains how the captures were produced, followed by two subsections
that prove empirically for which of these alternatives the learned mapping
confirms its validity as a practical muscle-activity measuring-process for tele-
rehabilitation. One shows results over the alternative geometric features, and
the other over the parameter for producing the augmented datasets.

3.1. Capturing setup

Using a Microsoft Kinect™ RGB-D camera, 3D point clouds were cap-
tured from a frontal view of the biceps muscle (see Figure 1) by positioning
the Kinect at coordinate (0,0,-0.2), corresponding to 20 cm over the negative
Z axis and pointing towards the origin. All captures were performed main-
taining uniform illumination and scale conditions in a posture restricted to
ensure an isometric contraction of the biceps. The subject was told to main-
tain the segment of the arm from the shoulder to the elbow in an angle of
approximately 45◦ with respect to the torso, and as the segment of the arm
from the elbow to the hand is in horizontal position parallel to the floor plane
(X axis), the shoulder-elbow segment is also approximately 45◦ with respect
to the X axis. The whole arm was supported only at the shoulder by the
back of a chair on which the subject was seated.

For each of the five weights, four bursts were captured using a tool of
the Point Cloud library[34] that captures 3D point clouds with the Kinect
at 30 fps. Ten seconds were captured for a total of 300 frames, from which
25 were sampled at random, resulting in four groups of 25 3D point clouds
per weight. Three bursts per weight — i.e. 75 × 5 = 375 point clouds —
were used to construct the captured training set. One burst per weight —
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Figure 1: Capture setup

25 × 5 = 125 point clouds — was separated for constructing the captured
testing set following the typical 75%− 25% split.

Next, these 500 point clouds were post-processed manually segmenting
out the points not corresponding to the biceps and moving the resulting
point cloud, so that the point in the biceps corresponding to the mid-distance
between its extremes (elbow and shoulder) was located at the origin of the
coordinate system. To accelerate a laborious manual segmentation, the same
segmenting planes were chosen for all images of the same burst. In the future,
the segmentation process could be automatized by applying algorithms of
3D object detection trained through examples to locate the target detection
object (in this case the biceps) in the full point cloud of the scene [41, 42].

In the next section, there follows an experiment for selecting the best
feature descriptor among the three considered.

3.2. Selection of geometric descriptor

As already mentioned, the best feature descriptor would be that with the
highest discriminative power, only measurable by comparing its performance
with some supervised learning algorithm. The natural choice in this work is of
course using the linear-SVM. To do this, MAE was evaluated obtained by the

13



Figure 2: (a) shows the difference of CVFH MAE minus ESF MAE for each of the tested
points of view; (b) shows the difference of VFH MAE minus ESF MAE for each of the
tested points of view.
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linear-SVM over the simulated training and testing sets obtained from the 375
training captures and the 125 testing captures, respectively, over 75 different
points of view. Seventy-five points were considered evenly distributed over a
40cm by 40cm by 20cm grid within the prism enclosed by vertices (X=20cm,
Y=20cm, Z=−20cm) down to the 3D point (X=−20cm, Y=−20cm, Z=0cm),
evenly distributed every 10 cm over the three directions. Three pairs of
training and testing examples per point of view were produced, one for each
of the three geometric features: VFH, CVFH, and ESF. The experiments
were also run with a four-fold cross-validation tuning over hyperparameter
C, considering the following as possible values: C = {2× 10−9, 2× 10−7, 2×
10−5, 2× 10−3, 2× 10−1, 2, 2× 101, 2× 103, 2× 105, 2× 107, 2× 109}.

Figure 2 shows the difference in the MAE of VFH and CVFH descriptors
with ESF for each of the 75 points of view where bars over 0g mean that ESF
performed better for the corresponding point of view. Figure 2 (a) shows that
ESF performed better thant CVFH in most of the tested points of view. Also
Figure 2 (b) shows that ESF obtained a better MAE than VFH in almost
all the tested points of view. Based on these results ESF was used as the
geometric descriptor of choice for the remaining experiments.

3.3. Selecting optimal data-augmentation parameters

In the following experiments, learning scenarios over four possible mea-
surement points of view were considered as depicted in Figure 1, with all of
them pointing to the origin of the coordinate system:

• (0,0,-0.2) corresponding to 20cm in front of the biceps,

• (0,-0.2,-0.2) corresponding to 20cm in front and 20cm over the biceps,

• (-0.2,0,-0.2) corresponding to 20cm in front and 20cm to the left of the
biceps,

• (0.2,0.2,-0.2) corresponding to 20cm in front, 20cm to the right, and
20cm below the biceps.

To produce the training sets for these learning scenarios, the authors
started by n = {1, 2, 3} of a total of three captured training bursts and simu-
lated n 3D point clouds for each of these measurement points of view. Next,
for each of these possible scenarios, the training set was built by augmenting
the captured set through the simulation of new 3D point clouds for points
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of view in the spatial surroundings of the original captures. To do this, N
points of view were sampled uniformly within a sphere of radius trainRadius
centered at the measurement point of view. Then, for each of the N sampled
points of view and each n training burst, two point clouds were sampled from
which two simulated point clouds for that point of view were generated, re-
sulting in 2× n×N simulated point clouds per measurement point of view.
Given all these simulated point clouds, the training set was generated by
computing the vector of geometric features for each and appending them the
weight lifted for each case as ground-truth label. The following experiments
report results for different values of n, N , and trainRadius.

The test sets were also generated through a simulation stage, this time
using randomly two clouds of the fourth burst reserved for testing purposes.
However, in this case 100 points of view were sampled, not from a sphere,
but rather a circumference of radius testRadius centered at the measurement
point of view whose plane is perpendicular to the line of vision, that is, the
line that connects the location of the measurement point of view with the
origin of the coordinate system. This choice of testing scenario is one that
represents the expected errors in the placement of the Kinect, for which
distance is regarded as much easier to guarantee than the angle. As for the
training set, from all these simulated point clouds, the test set was generated
by computing the vector of geometric features for each and appending them
the weight lifted for each case as ground-truth label.

3.3.1. Convergence over n and N

For the number of n bursts and N simulated points of view, both influ-
encing the size of the training set, convergence must be proven, from which
one could conclude that enough training data points have been produced.
For n a low convergence value is expected, as those bursts must be captured
manually for each of the patients, who often have some sort of ailment. In
contrast, the N simulated captures are obtained computationally, so there
is no major impact on the practicality of the method for high N values. As
shown below in detail, for all four measurement points of view, convergence
was reached for n = 3 bursts and over N = 1000 in most cases, with both
values within ranges that make the approach practical.

Figure 3 proves empirically that three bursts of 25 captures each are
sufficient for convergence when the training set is augmented with N = 1000
simulated points of view in a sphere of trainRadius = 2cm. The figure
shows four bar charts, one per measuring point of view, with each showing
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the MAE for the three possible values n = 1, 2, 3 (represented in bars of
increasing shades of grey) over five testing scenarios for increasing values of
testRadius: 3mm, 2cm, 4cm, 7cm, and 12cm. As observed in Figure 3, in all
cases there is a marked decrease in MAE (quality improvement) between one
and two bursts, whereas no major improvement or even decrease in quality
(mainly for large values of testRadius) occurs between two and three bursts.
This convergence is a clear sign that more bursts would show no significant
improvement.

To decide how many N simulated points of view are enough, trainRadius
was also fixed to 2cm and MAE was reported for an increasing number of
simulated training points of view within the corresponding sphere, namely,
N = {20, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000} for all four mea-
surement points of view. To further improve representativeness, ten training
sets per N were generated. For each training set, a mapping was learned and
tested for five scenarios of different testRadius: 3mm, 2cm, 4cm, 7cm, and
12cm. Figure 4 shows the results of each of the four capture points of view
showing each of the five curves, one per testRadius. Each figure plots MAE
mean and standard deviation for each of the five testing scenarios.

The immediate conclusion is that more data points indeed decrease MAE,
at least for small N , together with a convergence over approximately N = 500
for which despite some minor oscillations, the MAE mean remains constant.
This corresponds to the fact that at approximately N = 500, no further
improvement in mapping quality can be expected.

3.3.2. Impact of trainRadius on method performance

The experiments conducted so far fixed the trainRadius to a value of 2cm.
This section shows trends for increasing values of this radius, by evaluating
how spatially-expanded models learned from training sets have an impact on
measurement with potentially misaligned measuring devices. Thus, a train-
ing set was produced for trainRadius = {0, 0.5, 1.0, 1.5, 2.0}cm. A model
for each was learned and tested for five scenarios of different testRadius:
3mm, 2cm, 4cm, 7cm, and 12cm. For consistency the same density of points
per training sphere was maintained rather than the same total number of
points (resulting in a cubic increase in the actual N , as volume grows with
trainRadius3). N = 1000 data points were simulated for the largest value of
trainRadius=2cm, and then they were simply sub-sampled for the smaller
spheres. There follows the MAE for all four measurements points of view in
Figure 5, with each figure containing one curve per testRadius ranging over

17



Figure 3: Figures (a), (b), (c), and (d) show the MAE mean for increasing values of n
training bursts for trainRadius = 2cm and N = 1000 over the four measurement points
of view.
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Figure 4: Figures (a), (b), (c) and (d) show the mean and standard deviation of the MAE
for a trainRadius = 2cm, increasing values of N over the four measurement points of
view, with five curves each corresponding to the five testing scenarios.
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all values of trainRadius.
As it can be observed, for all four measurement points of view and all

testRadius in each figure, the curves show a clear tendency to reduce MAE
with increasing trainRadius, proving empirically that the spatial expansion
of the training set indeed produces a better mapping, as shown by lower
values of MAE. Moreover, only the figure corresponding to (-0.2, 0,-0.2)
shows convergence, proving through all the other cases that there may be
further improvements for even larger spatial expansions of the training set.

4. Discussion

The experimental results presented in Section 3 prove the existence of cor-
relations between the muscular effort and 3D images of the biceps amenable
for extraction by autonomous systems that are both non-intrusive (no elec-
trode or cumbersome apparatus required) and simple enough to be easily
installed by non-medical technicians to be operated later on by the user.
Moreover, the results of our experiments show that this visual measurement
approach is capable of finding discriminative patterns between discrete lev-
els of effort, ranging from zero to roughly MVC, with errors low enough to
compete with an EMG.

To further this argument, Table 1 shows the values of the above results for
trainRadius=2cm and n = 3 training bursts, the values for these parameters
that showed the best results in all cases, all measuring points of view, and all
testing scenarios. For each testRadius (column TeR in Table 1), the table
shows the performance measurement values at N? — the value of N with the
best MAE. Although the problem tackled in this work is one of classification,
in order to be able to somehow compare the results with previous similar
works the coefficient of determination R2 was also calculated by transforming
the classes to their values in grams as for the MAE and reported it in this
table. The table shows the best results for the point of view of (0,-0.2,-
0.2)(Table 1 (b)) corresponding to an upper-front view of the biceps. We can
see for this case that measurements of up to 4cm away from the measurement
point of view would incur in a MAE smaller than 350g. On the contrary,
measurements up to 12cm away from the measurement point of view would
incur in a MAE smaller than 450g.

Although no equal works that estimate activation level exclusively from
3D point clouds were found, the errors obtained by the proposed method are
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Figure 5: Figures (a), (b), (c), and (d) show the MAE mean for increasing values of
trainRadius over the four measurement points of view, with five curves each corresponding
to the five testing scenarios.
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equivalent to those reported for EMG force measurements [43, 44]. Consid-
ering that in the problem under study, the MVC corresponds to the highest
level of activation measured (class O4k) – a weight of 3885g — the errors ob-
tained by this method are between 9% (350g) and 11% (450g) of the MVC.
Interestingly, these errors are equivalent to those reported for EMG force
measurements [43, 44] that range between 9% and 10% of MVC values .

Similar to this work, there is a group of works that tackle the problem
of predicting muscle activity, but from kinematic and kinetic information.
Some of the most recent works of this group are [45, 46, 47, 48]. The work
in [45] compares a linear logistic regression model with artificial neural net-
works and other prediction models in the task of predicting the activity of
six muscles in the right lower extremity. As input to the models, they pro-
vide joint angles and external forces. The best results show a determination
coefficient of 0.42 between the predicted and real activity. In [46] artificial
neural networks are tested to predict the EMG activity of 12 arm muscles.
Inputs to the models include hand position, hand orientation, and thumb grip
force. The best results present a determination coefficient of 0.6, and this
measurement specifically for the biceps is 0.5. In [47] regression equations
are built to predict the 10th percentile, the median, and the 90th percentile
of muscle activity around the shoulder joint, given an arm posture and net
shoulder moments. The determination coefficient of all regression equations
ranges between 0.228 and 0.818. Finally in [48] a multi-dimensional wavelet
neural network is proposed to predict human lower extremity muscle activity
based on ground reaction forces and joint angles. The best results show a
determination coefficient above 0.9.

For the reviewed works, kinematic information is highly informative mainly
because they analyze movement. However, it could be the case that for the
same posture or movement, the level of contraction may be different, and
using only kinematics to infer activation may fail. For this reason, the men-
tioned works add external force information (kinetics) as input to their mod-
els. Although direct force measurement is helpful, in a tele-physiotherapy
setting like the one considered in this work, adding force sensors could be
an extra and impractical requirement to fulfill. To avoid the need for these
sensors, the proposed approach measures the effect of external forces on ac-
tivation in an indirect and non-invasive way by considering the arm’s surface
deformation. Additionally, since static postures are being analyzed includ-
ing kinematic information, in this approach the latter is not necessary as
it is a constant value. However, if movement were to be analyzed, kinetic
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information must definitely be included.
Although these works estimate the continuous level of muscle activation,

since the problem posed is one of classification, in order to be able to somehow
compare the results of this work with similar previous works, the coefficient
of determination R2 was calculated by transforming classes to their values
in grams as for MAE. For the best measurement point of view (0,-0.2,-0.2)
(Table 1 (b)), R2 values for each testRadius are: R2 = 0.67 for testRadius =
0.3cms; R2 = 0.7 for testRadius = 2cms; R2 = 0.68 for testRadius = 4cms;
R2 = 0.64 for testRadius = 7cms and R2 = 0.58 for testRadius = 12cms.
The presented works report determination coefficients between 0.228 and 0.9.
Here it is worth mentioning that exclusively for the biceps, the value obtained
by [46] was 0.5. On the contrary, the reported determination coefficient for
the proposed work is between 0.58 and 0.7. With the exception of some
cases where these works report correlations above 0.7, the results of this
method are comparable with those reported by the reviewed works. These
results are encouraging considering that, although discrete levels for static
postures are estimated, the task faced is more challenging. This consideration
is based on the fact that kinematic together with kinetic information define
almost completely the value of muscle activation, and is therefore, much more
informative than geometric information only.

With regard to point cloud description, another group of works have
been dedicated to solving the problem of characterizing skin deformation
caused by underlying muscle contraction both from 2D [49, 50] and 3D images
[51]. The problem solved by these methods differs from that solved by the
proposed method in that they do not attempt to estimate muscle activation
level, but rather seek to build a representation of deformation due to muscle
contraction, without prediction. From these works, [51] is the closest to this
approach since they also prove the correlation of geometrical deformation
of the arm’s surface with underlying muscle activity, although they do not
pretend to validate the effectiveness of their proposed method to quantify and
predict muscle activation. The method proposed in this work to characterize
arm deformation could be used in the future as another way to characterize
the approach input point clouds.

From this analysis, it can be concluded that the work proposed in the
present study constitutes a positive result toward a practical measurement
of biceps muscle activation apparatus in the context of tele-rehabilitation.
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TeR N? MAE R2

0.3 900 369.98(7.31) 0.63(0.01)
2 1000 406.20(0) 0.6(0)
4 900 406.62(4.57) 0.6(0)
7 400 468.55(14.51) 0.52(0.02)
12 600 585.53(12.10) 0.39(0.01)

(a) Measurement POV = 0,0,-0.2

TeR N? MAE R2

0.3 700 345.73(15.42) 0.67(0.01)
2 700 328.55(11.73) 0.7(0.01)
4 1000 344.60(0) 0.68(0)
7 1000 403.50(0) 0.64(0)
12 800 441.43(9.34) 0.58(0.01)

(b) Measurement POV = 0,-0.2,-0.2

TeR N? MAE R2

0.3 1000 553.20(0) 0.43(0)
2 900 562.80(3.5) 0.42(0)
4 300 565.78(17.5) 0.45(0.02)
7 1000 574.95(0.6) 0.43(0)
12 900 701.76(8.21) 0.25(0.01)

(c) Measurement POV = -0.2,0,-0.2

TeR N? MAE R2

0.3 800 344.98(7.71) 0.6(0.01)
2 800 381.12(12.34) 0.56(0.01)
4 300 441.20(12.99) 0.5(0.02)
7 900 527.02(8.32) 0.41(0.01)
12 400 701.68(11) 0.13(0.03)

(d) Measurement POV = 0.2,0.2,-0.2

Table 1: MAE and R2 of the approach for n = 3 train bursts and trainRadius = 2cm for
the best performing N for each testRadius (column TeR, reported in cms). Tables (a),
(b), (c) and (d) for each of the measurement points of view.

5. Conclusions and future work

This work presents the first steps towards the estimation of the arm mus-
cle activation level from biceps 3D point clouds using Computer Vision and
Machine Learning. Its main objective is the early exploration of these tech-
nologies for the measurement of muscle activation level remotely from exter-
nal arm images in order to satisfy the requirements of telemedicine settings.
The solution to the specific problem tackled in this work for measuring dis-
crete levels of biceps activation in isometric contraction could be put into
practice with small improvements in the monitoring of intensity and time
of muscle contraction in biceps isometric contraction tele-rehabilitation ex-
ercises and as a way to automate the execution of the well-known manual
muscle test for measuring biceps strength. The proposed approach consists
in a framework that considers the generation of a feature vector for the point
clouds of the muscle area using the ensemble of shape functions 3D geomet-
ric descriptors for a given 3D image captured at some recommended point of
view and its spatial neighborhood. It also uses the training of a model for au-
tonomously estimating the level of effort of new examples using the support
vector machine supervised machine-learning technique. These early results
are the first steps in this line of research that aims to develop a new technol-
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ogy for remote muscle activity sensing as a tool to improve musculoskeletal
system biomechanical sensing. One important finding of this work is that
spatially augmenting the amount and variability of training data helps to
increase estimation accuracy, or in other words, helps to reduce the number
of actual captures required for training a model with enough accuracy. Al-
though this is a solid first step toward achieving a practical application in the
future, the efficiency obtained is limited to settings of isometric contraction
and to the biceps muscle.

Future work will entail evaluating the methodology by applying deep
learned features instead of the hand crafted ones used in this work, or even
replacing the whole pipeline with a deep learning approach that integrates
the whole cloud characterization and model learning process into one deep
neural network. Alternatively, the proposed framework could be tested using
[51] as a feature to characterize the point clouds.
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