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Abstract. A problem of great interest in disciplines like occupational
medicine, ergonomics, and sports, is the measurement of biomechani-
cal variables involved in human movement and balance such as internal
muscle forces and joint torques. This problem is solved by a two-step pro-
cess: data capturing using impractical, intrusive and expensive devices
that is then used as input in complex models for obtaining the biome-
chanical variables of interest. In this work we present a first step towards
capturing input data through a more automated, non-intrusive and eco-
nomic process, specifically weight held by an arm subject to isometric
contraction as a measure of muscular effort. We do so, by processing
RGB images of the arm with computer vision (Local Binary Patterns
and Color Histograms) and estimating the effort with machine learning
algorithms (SVM and Random Forests). In the best case we obtained an
FMeasure= 70.68%, an Accuracy= 71.66% and a mean absolute error in
the predicted weights of 554.16 grs (over 3 possible levels of effort). Con-
sidering the difficulty of the problem , it is enlightening to achieve over
random results indicating that, despite the simplicity of the approach,
it is possible to extract meaningful information for the predictive task.
Moreover, the simplicity of the approach suggests many lines of further
improvements: on the image capturing side with other kind of images;
on the feature extraction side with more sophisticated algorithms and
features; and on the knowledge extraction side with more sophisticated
learning algorithms.
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1 Introduction

Musculoskeletal system biomechanics is a scientific discipline that aims to study
the mechanical structures, laws, models and phenomenons that are important to
the balance and movement of humans. The biomechanical variables most stud-
ied when analyzing balance and movement are internal and external muscles
forces, and joint torques. The analysis of these variables allows the identification
of harmful movements, overexertions, awkward postures, musculoskeletal disor-
ders, optimal movements, among other states of the human body that have high
impact in its health and performance. This results in its application in disciplines
like occupational medicine [4], ergonomics [28], and sports [16], among others.



The estimation of internal muscular forces and joint torques is not made
through direct measurement, but indirectly through dynamical models. These
are: inverse dynamics, forward dynamics, and electromyography guided mod-
els [30,21,22]. Possible inputs for these models are the level of activation of the
muscle, obtained by processing the electric signal (electric activity) produced
by the muscles when contracting; the kinematic variables of joint positions at
each instant; and the external forces involved in the movement or posture. After
a computer process they return as output, among other variables, the internal
forces, the joint torques or the muscular activation level. Nowadays, the mea-
surement of electric muscular activity during muscle contractions is performed
by an expensive device called electromyograph (EMG). The use of this device
requires the adherence of wired electrodes to the skin or the introduction of
wired needles in the muscles. Although there exists as well the wireless EMGs,
these are considerably more expensive and therefore rarely used in practice. To
capture the kinematic variables, commonly used devices are: goniometers to mea-
sure angles between body parts (require fixing sensors on the body) and motion
capture systems that visually measure the positions of body parts (require adher-
ence of markers and using expensive multi-camera systems), among others. The
mentioned technologies are expensive, they limit the body movements through
electrodes, needles, marker suites, and goniometers; and require special mount-
ing devices; all of which makes them unsuitable for use outside a laboratory
environment. In recent years, automatic measurement of kinematic information
using inexpensive cameras has achieved a significant level of maturity because
of the appearance on the market of low cost depth sensors (Microsoft Kinect
[2], Asus Xtion [1], among others). With these devices it has been made pos-
sible to measure the joints position [10] with acceptable precision. However, to
the best of the author’s knowledge, there is still no convincing image-processing
technology for estimating the level of muscular activation. This paper presents
an approach that aims to take the first steps to solve this problem.

The objective of the authors research line is to solve the problem of estimating
the electric muscular activity by the indirect estimation of highly correlated
variables, in particular for this paper, the weight of objects held in a static
posture of isometric contraction. The correlation is justified by considering that
the greater the weight, the greater will be the force needed to hold it, and
greater the electrical activity produced to contract the muscle. We refer to these
measures now on under the name of muscular effort or muscular activity. This
line of research has practical applications in situations where it is necessary
to estimate the muscular effort wirelessly. For example, it could be used to
estimate the muscular activation patterns of an athlete during the execution
of some movement. Another application could be to estimate the effort that a
worker is performing during a task in order to detect harmful movements in an
occupational environment. It’s worth to clarify that these applications will be
possible when this research line has reached maturity and when the framework
has been tested in real conditions. This work presents the first experimentation
for the research line, lacking of a practical application in the immediate future.



The main contribution of the present work is the application of computer
vision and supervised machine learning for solving the problem of estimating
the weight of object held by the arm of humans through postures of isometric
contraction, from RGB images of the arm taken in uniform scenes, with the same
conditions of illumination, scale and point of view for each one.

For shading some light on the originality of our contributions, its impact, and
feasibility we present related works in Section 2. We present our approach for
solving the problem in Section 3. Section 4 presents the experimental setup used
for proving the effectiveness of our approach, followed by its results in Section
5. We end with discussions in Section 6, and conclusions in Section 7.

2 Related work

As far as the authors have been able to investigate, there are no contributions
in the literature that solve the specific problem of estimating muscular effort,
exclusively from skin images. However, it is possible to find work related to
the general problem of characterizing muscle contraction from body images but
these either use extra information such as kinematic variables obtained through
other capturing devices or EMG measurements, or rather aims to model the
skin features for different underneath contractions. In this section we compare
our contribution with the problems and techniques considered by these works,
highlighting the differences that justify the originality of our proposal.

We start by the paper [5], whose main contribution is the interactive pre-
sentation of the approximated level of muscular activation that is produced in
inferior extremities muscles when executing different movements. This informa-
tion is presented in an augmented reality interface and the level is obtained from
a database generated from EMGmeasurement and its respective kinematic infor-
mation. This database is a straightforward indexing mapping between kinematic
information and EMG measurements, with no model learning that maps them,
and therefore prone to errors when used for estimation of muscle activity. When
compared to our approach, it is based on kinematic information obtained by
skeleton tracking from an RGBD sensor, and not on skin RGB images.

Another related problem is the one discussed by [26], consisting in the iden-
tification and classification of walking patterns between examples of healthy and
injured subjects. Here, they use skin deformation information, together with
EMG measurements of the subjects, as input to a neural network for the clas-
sification. Although this paper focuses on computer vision for extracting skin
deformation information from RGB images, they don’t use this skin informa-
tion for estimating muscular activity, but rather use it with such information,
obtained by direct measurements of EMGs.

Another group of works have been dedicated to solve the problem of model-
ing the deformation of the skin due to underlying muscle activity [23,18,24,12]
[34,11,29], but with applications in computer graphics for animating virtual char-
acters. The problem solved by these papers differ from the one that we plan to
solve in that they don’t attempt to estimate the muscular activity, but rather
seeks to model the deformation due to muscle contraction, without prediction.



Another difference is that they obtain the visual information from motion cap-
ture systems by marker tracking and depth information from RGBD sensors,
instead of from RGB images as it is done in this work.

There is also a group that have used computer vision techniques to evalu-
ate and measure the deformation and movement produced in the skin due to
muscular contraction mainly using pixel movement information form RGB im-
ages [6,17,35,9]. The latest work of Carli et. al, as asserted by the authors, is an
improvement of the former, and both [6,17] aims at modeling skin deformation
when the biceps is under isometric contraction. Although clearly related to our
present work, their goal is on the opposite direction, being our goal the modeling
of the underneath contraction from skin features, and not the other way around.
It is worth to clarify that [35,9] work over an insect instead of over human skin.

Finally there is a group of works that pretend to solve the problem of pre-
diction of electric muscular activity from kinematic information, most of them
validating with EMG captures [31,8,13,25,32,3] or by muscular activation ob-
tained from an inverse dynamic model [15]. Their approaches consider methods
as neural networks [15,3,25,8], probabilistic Bayesian reasoning [3,31], curve fit-
ting methods [3], regression models [32] and biomechanical models [13]. While
these works solve the same problem we want to solve, they do so with kine-
matic information obtained from motion capture systems instead of visual skin
information obtained from RGB images.

From the survey of the state of the art, we can argue that there is no previous
work that performs estimation of muscular effort from external images of the skin
using Computer Vision and Machine Learning, as we propose in this paper.

3 Our approach
Our approach is an autonomous modeling of the relationship between skin char-
acteristics and weights lifted by an arm in conditions of isometric contraction.
This modeling is constructed by a supervised learning procedure outlined in
Figure 1. This general approach can be instantiated differently for the different
components and we discuss these variations in this section. The input of the
procedure are images of the arm region, corresponding to different conditions of
weight lifting. Input images are cropped to the biceps region and segmented from
the blue background ((A), detailed in sub-section 3.1). By a feature extraction
process, each image is characterized in a vector of numeric values ((B), detailed in
sub-section 3.2). Optionally these vectors could be complemented with anthro-
pometric data of the subject ((C), detailed in sub-section 3.3). These vectors
could be also normalized in relation to minimum effort cases for the correspond-
ing subject ((D), detailed in sub-section 3.4). The resulting vectors are labeled
with the corresponding weights and supplied as input to a machine learning
algorithm during the learning stage ((E), detailed in sub-section 3.5).

3.1 Capture and segmentation (A)
The process starts by capturing static RGB images, with blue background, of
subjects arms holding one of five possible objects of differing weights. Then, the
images are cropped to the region of the biceps. After that, the blue background



Fig. 1. Outline of the approach

is removed by automatic segmentation process using the Gaussian Mixtures al-
gorithm [33], pre-trained with some manually segmented images.

3.2 Feature extraction (B)

Each segmented and cropped image is processed for feature extraction producing
a vector of a fixed number of quantities (i.e., dimensions) that describes the
image. The feature vector of training images is extended with a label indicating
the actual weight sustained. In this work we evaluated our approach building
the feature vector with information of texture and/or color.

For texture we used the Local Binary Patterns [19] feature extraction algo-
rithm. Briefly, it proceeds by dividing the image into 9 regions of interest (ROI)
through a 3 by 3 grid. Then, local binary patterns are computed for each of
these ROI, generating for each of its pixels a binary code of 8 bits, one for each
of its 8 nearest neighbors, deciding 0 if the pixel is greater than its neighbor or
1 otherwise. For each ROI the binary codes are accumulated in a histogram ac-
cording to their decimal value, and these histograms are later concatenated in a
vector that describes the whole image. We used 59 bins for each ROI histogram.

For color we used color histograms [20,27]. As in the previous case, images
were divided into 9 ROIs through a 3 by 3 grid, and for each of these a color
histogram was computed using the HS channels of the HSV color space. We used
5 bins to accumulate the colors of the pixels of each channel. The image was then
described through a concatenation of the color histograms of each of the ROIs.

3.3 Inclusion of anthropometric data (C)

Another component of the approach is the possibility to augment the raw feature
vector obtained by image description with anthropometric information of the
subject. The anthropometric data included in this step is: the gender of the
subject, his weight, his height, his body mass index, the level of physical exercise
that he normally does, and the level of exercise that he normally does with the
arm (all of these obtained by questioning the subject during the picture session).



3.4 Feature vector normalization (D)

It is quite clear that generalizing among subjects is a difficult task, as their
arms may differ in so many aspects that has no relation whatsoever with the
muscle contraction, adding a lot of noise. Moreover, their arms may produce
quite different skin patterns for the same muscle contraction. We propose here
a first step to tackle these issues that could be thought as a calibration process,
where the feature vector of some subject is normalized by subtracting from it
the feature vector of the case of effort zero. This procedure breaks the standard
supervised learning protocol, as for new subjects as input to the framework, it
is provided not only the input data, but the output data of the zero effort cases.
In practice, however this is a simple request for the subjects.

3.5 Estimation of muscular effort by machine learning (E)

The final component of our approach consists in running a supervised learning
algorithm for predicting the weight lifted by a biceps muscle, when given images
of the arm. In this work we evaluate the performance of radial basis Support
Vector Machine [7] (SVM) and Random Forests [14]. In a first stage the algo-
rithms are trained using a corpus of labeled subjects images through a dataset
whose data-points consists of the feature vector produced as explained above,
that may be normalized or not and may contain anthropometric data or not,
and labeled with the actual weight lifted in that image.

During training we tuned the user-given parameters of the learning algo-
rithms over a grid of possible values using a 10 fold cross-validation over the
training set, choosing the parameters with overall better performance over the
10 cases. Radial SVM has two given parameters: C (the soft margin), and σ
(the standard deviation of the kernel parameter), both tuned over the set of
values {0.002, 0.02, 2.20, 200}. Random Forests was tuned over the number of
random variables used for constructing each of its trees, considering different
proportions over the total number of variables (of the input feature vectors):
{2%, 6%, 12%, 25%, 50%, 75%, 100%}. At the moment of the estimation of the
effort level of a new image, the trained model is used.

As there have not been found previous work that estimate the muscular effort
from images using a similar approach, we decided to include a third learning
algorithm, the random classifier, as our competitor.

4 Experimental Setup

The current and following sections presents our experimental setup. With these
experiments we intend to answer empirically the main question of this work:
whether computer vision and supervised-learning techniques are capable of ex-
tracting enough information from arm images for inferring the weight they are
lifting. For that, we start presenting in the next sub-section 4.1 the process fol-
lowed for capturing the image corpus, followed by sub-section 4.2 that explains
the process followed for generating the training and testing datasets, and con-
clude with the sub-section 4.3 that describes the performance measures used for
evaluating the outputs of the machine learning algorithms.



4.1 Capture of Raw Image Data

For this work we captured images from 100 human subjects. The group of sub-
jects presents variability in their characteristics. It is conformed by both women
and men of white to latin dark skin that exercise with differing levels of intensity
from low to moderate, with ages ranging between 17 and 54 years old, weights
ranging between 47 and 113 kgs, their heights varying between 1.6 mts to 1.9
mts, and their body mass index varying from 19.32 and 34.16. For each subject,
3 photos holding 5 objects of different weights were captured using a Canon EOS
1000D camera with Zoom Lens of 75-300mm, without flash and manual focus.
The same set of objects were used for each subject: object O0 of 0 grs, the object
O500 of 500 grs, the object O1k of 1300 grs, the object O2k of 1900 grs, and
the object O4k of 3800 grs. The photos were captured as close as possible of the
biceps, using a blue background (to ease the autonomous segmentation of the
biceps). Each subject was told to exert an isometric contraction effort, holding
in front of the camera a posture where the segment of the arm from the shoulder
to the elbow was separated approximately 45◦from the torso and the segment
of the arm from the elbow to the hand was horizontal. All the photos were cap-
tured over this posture in order to control this variability for the experiments.
The scene was artificially illuminated with a little searchlight of 60W, located
in front of the subject, but from the right side, elevated about 1.5 meter from
the subject, and aiming to the arm. As mentioned earlier, each image was then
cropped to the biceps zone in order to remove clutter from the image, and then
segmented from the background.

4.2 Datasets generation

Our approach is tested in the standard training/testing approach, where the
model is learned over the training set, and evaluated over the test set. We gener-
ated 10 pairs of training/testing datasets, each pair generated by first selecting
randomly 8 out of the 100 subjects (8%), and producing as testing set the 120
images corresponding to 8 subjects times 5 weights times 3 (repetitions) images;
and as training set the images of the remaining 92 subjects (92%). The experi-
mental results shown in the following section are over different instances of the
approach, and for each case it is reported the mean and standard deviation over
the 10 datasets pairs.

4.3 Performance measures

In this section we present the performance measures used for the evaluation of
each instance of the proposed framework. As the problem is solved as one of im-
age classification, we report the classical performance measures for classification
tasks: accuracy over all the confusion matrix, named as Overall Accuracy and
computed as OvA =sum of the diagonal values / sum of the whole matrix values,
also Precision (P), Recall (R), FMeasure (FM), and Accuracy (A); computed
for each class independently, resulting in n of them (n = number of classes),
and grouped by reporting their means over all the classes. For each class i,
they are computed as follows: Pi = number of correctly classified examples of



class i / total number of examples classified as class i; Ri =number of cor-
rectly classified objects of class i / total of examples that truly are of class i,
FMi = 2 × ((Pi × Ri)/(Pi + Ri)), and finally Ai =sum of the quantities of the
diagonal + the sum of the quantities not belonging neither to the row i nor
to the column i / total number of examples. We also report the mean absolute

error (MAE) by transforming the object class label to its corresponding value
in grams. This measure tells us how is the error made at estimating the weight
of the held out object. It is calculated as the mean of the absolute values of the
differences between the predicted weight minus the true weight. Therefore, the
smaller the MAE, the better the result of the estimation.

5 Experimental Results

To conclude the validation of our hypothesis and the contribution of this paper,
we present in this section the results of the experiments over all instantiations
resulting from selecting the learning algorithm, the feature extraction algorithm,
whether it is used anthropometric data or not, and whether a normalization is
conducted over the dataset or not. Each case is ran over all 10 training datasets,
and the mean and standard deviation (subindex and parenthesis numbers) of the
performance measures over the corresponding test sets are reported. The results
are shown in Tables 1 (classification over 3 levels) and 2 (classification over 5
levels). The first column labeled ’Desc’ describes the feature extraction technique
used, with LBP for Local Binary Patterns and HSCH for Color Histograms. The
second column labeled ’SI’ indicates whether anthropometric subject informa-
tion is appended to the input dataset set or not. The third column labeled ’N’
indicates whether normalization was applied or not. The fourth column ’MLAlg’
describes the machine learning algorithm used, with SVM for Support Vector
Machine, RF for Random Forests and RDM for the Random classifier. The re-
maining columns report each of the 6 performance measures.

We start with a simpler setup where we tried to predict only over 3 levels
of effort, considering only the examples of O0, O2k and O4k. These results are
shown in Table 1. As it can be seen in the Table, the prediction made with the
proposed descriptors when normalization is not performed (not grayed out) were
better than the random prediction. Despite of this, they present low classifica-
tion measures and relatively high MAE. In those cases where normalization was
applied (grayed out), the results became substantially better. In the best cases
we obtain classification measures over 70% and a MAE down to 554 grs. We
also tested the performance of an instance of the approach that use as descrip-
tor the combination of the two descriptors (HSCH&LBP), showing only minor
improvements over the overall best cases, but large improvements for the SVM
classifier. With this first experiment it is possible to prove that the normalization
of the raw feature vectors proposed improves the performance of the framework,
leading to acceptable values of classification measures and weight prediction.

In Table 2 we show the results of a second experiment. In order to improve
the impact of our solution, we decided to evaluate the approach in the task
of classification over the 5 levels of effort. As it is possible to see, when in-



Desc. SI N MLAlg. P̂ R̂ ˆFM Â OvA MAE

RDM 34.7(5.81) 34.72(6.03) 34.36(5.92) 56.48(4,02) 34.72(6.03) 1657.22(147.08)
LBP NO NO RF 49.38(9.85) 49.58(7.52) 48.39(8.2) 66.38(5) 49.58(7.52) 1095.13(219.46)
LBP YES NO RF 49.3(7.32) 49.44(6.52) 48.48(6.65) 66.29(4.34) 49.44(6.52) 1137.36(182.17)
LBP YES YES RF 71(6.43) 69.86(5.36) 69.77(5.32) 79.9(3.57) 69.86(5.36) 572.63(101.86)
LBP NO YES RF 71.21(7.65) 70.69(7.24) 70.55(7.22) 80.46(4.83) 70.69(7.24) 556.8(137.65)
LBP NO NO SVM 46.87(8.02) 43.61(6.58) 40.32(7.54) 62.4(4.39) 43.61(6.58) 1369.58(216.69)
LBP YES NO SVM 48.74(12.77) 48.05(11.86) 45.36(14.05) 65.37(7.9) 48.05(11.86) 1184.86(379.45)
LBP NO YES SVM 67.96(5.75) 68.61(4.73) 65.91(6.74) 79.07(3.15) 68.61(4.73) 606.94(97.95)
LBP YES YES SVM 69.13(13.56) 66.94(3.57) 60.06(4.87) 77.96(2.38) 66.94(3.57) 641.25(72.58)
HSCH NO NO RF 48.02(9.87) 48.47(8.62) 47.27(9.17) 65.64(5.74) 48.47(8.62) 1169.02(265.65)
HSCH YES NO RF 53.32(10.19) 53.33(8.61) 52.06(9.07) 68.88(5.74) 53.33(8.61) 1081.94(207.04)
HSCH YES YES RF 71.18(6.29) 71.66(5.82) 70.4(6.37) 81.11(3.88) 71.66(5.82) 572.63(136.86)
HSCH NO YES RF 70.31(4.68) 69.72(4.57) 69.14(4.46) 79.81(3.04) 69.72(4.57) 606.94(86.18)
HSCH NO NO SVM 47.05(8.35) 45.97(8.11) 44.02(8.55) 63.98(5.4) 45.97(8.11) 1377.5(284.97)
HSCH YES NO SVM 48.34(9.65) 46.38(6.9) 44.22(7.43) 64.25(4.6) 46.38(6.9) 1385.41(172.03)
HSCH NO YES SVM 67.24(6.62) 66.11(5.32) 64.02(6.07) 77.4(3.55) 66.11(5.32) 691.38(106.14)

HSCH&LBP NO YES RF 69.52(5.12) 68.47(5.03) 68.12(4.73) 78.98(3.35) 68.47(5.03) 599.02(95.59)
HSCH&LBP YES YES RF 71.3(5.46) 70.83(5.27) 70.68(5.21) 80.55(3.51) 70.83(5.27) 554.16(100.29)
HSCH&LBP NO YES SVM 71.74(7.98) 71.52(7.11) 70.35(7.84) 81.01(4.74) 71.52(7.11) 556.8(149.51)

Table 1. Estimation results for 3 levels of effort. Cases with normalization were grayed
out. Best performance measure obtained results are in bold.

creasing the number of classes, the performance measures decreased. This hap-
pens because five different levels of effort are less discriminable visually than
three. Here we can see also that the normalization step improves significantly
the performance of the framework. Also in this case, the combined descriptors
got good results but they aren’t significantly better than those obtained by
the single descriptors. In these experiments also the case that got the best mea-
sures (HSCH&LBP+NO+YES+SVM) shows that combining the two descriptors
make possible to get better results for the SVM classifier. It is possible to see
that the classification measures obtained with normalization almost duplicate
the values of the random classifier. Besides, in the better case, the MAE de-
creases significantly leading to an error of 825 grs which to the authors criterion
is a good value considering that the minimum difference between two different
examples could be 500 grs and the maximum difference could be up to 3800 grs.

Desc. SI N MLAlg. P̂ R̂ ˆFM Â OvA MAE

RDM 20.7(3.76) 20.41(3.17) 20.39(3.39) 68.16(1.26) 20.41(3.17) 1413.66(95.94)
LBP NO NO RF 34.62(7.34) 32.51(5.81) 31.61(6.03) 73.01(2.33) 32.52(5.82) 1122.72(195.39)
LBP YES NO RF 26.12(5.71) 27.25(4.23) 25.51(4.85) 70.9(1.69) 27.25(4.23) 1176.08(150.4)
LBP YES YES RF 45.48(6.84) 46.33(5.48) 45.14(5.82) 78.53(2.19) 46.33(5.48) 826.16(130.32)
LBP NO YES RF 47.38(5.93) 46.52(5.9) 45.54(5.75) 78.61(2.35) 46.53(5.89) 878.88(143.88)
LBP NO NO SVM 33.44(9.13) 28.83(3.89) 25.32(3.45) 71.53(1.55) 28.83(3.89) 1499.75(203.72)
LBP YES NO SVM 26.89(7.03) 28.01(3.75) 24.96(4.4) 71.21(1.49) 28.04(3.74) 1388.68(190.97)
LBP NO YES SVM 45.31(5.23) 46.73(4.63) 44.09(5.17) 78.72(1.84) 46.81(4.62) 825.05(212.92)
LBP YES YES SVM 42.97(11.3) 43.33(4.23) 36.17(5.52) 77.33(1.69) 43.33(4.23) 1267.75(123.59)

HSCH NO NO RF 30.91(4.86) 30.76(5.1) 29.1(4.69) 72.31(2.04) 30.77(5.11) 1068.86(120.98)
HSCH YES NO RF 29.58(5.36) 29.91(4.31) 28.87(4.95) 71.96(1.72) 29.91(4.31) 1098.75(129.61)
HSCH YES YES RF 45.6(4.45) 46.61(5.29) 44.94(4.73) 78.65(2.12) 46.62(5.3) 825.43(109.69)
HSCH NO YES RF 46.52(5.77) 47.44(4.1) 45.13(4.98) 78.98(1.64) 47.95(4.11) 890.3(103.48)
HSCH NO NO SVM 26.25(6.54) 27.08(5.73) 25.24(5.77) 70.83(2.29) 27.08(5.73) 1380.58(198.27)
HSCH YES NO SVM 23(3.81) 25.58(3.49) 22.64(3.42) 70.23(1.39) 25.58(3.49) 1418.75(136.12)
HSCH NO YES SVM 45.21(3.37) 45.41(2.29) 41.79(2.39) 78.16(0.91) 45.41(2.29) 1076.41(65.72)

HSCH&LBP NO YES RF 45.32(5.59) 45.66(5.39) 44.23(5.13) 78.26(2.15) 45.66(5.39) 857.83(107.03)
HSCH&LBP YES YES RF 45.54(5.15) 46.1(6.38) 45.01(5.55) 78.44(2.54) 46.11(6.36) 824.43(151.76)
HSCH&LBP NO YES SVM 51.67(5.47) 51(4.09) 48.33(4.79) 80.4(1.63) 51(4.09) 842.66(151.74)

Table 2. Estimation results for 5 levels of effort. Cases with normalization were grayed
out. Best performance measure obtained results are in bold.



From the results we can affirm that it is possible to differentiate the level of
muscular effort that a person is performing from a photo of a biceps: between
5 levels with FMeasure≈ 48% and Accuracy≈ 80%; and between 3 levels with
FMeasure≈ 70% and Accuracy≈ 81%. Besides, it is possible to estimate the
weight that a person is holding with his arm from a photo of his biceps: over 5
different weights (0 grs, 500 grs, 1300 grs, 1900 grs and 3800 grs) with a mean
absolute error≈ 825 grs; and over 3 different weights (0 grs, 1900 grs and 3800
grs) with a mean absolute error≈ 554 grs.

6 Discussions

From the experimental results analysis showing improvements over the random
classifier, we can conclude that our approach performs acceptably in finding vi-
sual patterns of biceps images and their correlations with muscle effort. This is
clearly an important and solid step for achieving in the future a practical appli-
cation. Despite this positive result, the framework of feature extraction followed
by supervised learning presented in this work is proven by our experiments in-
sufficient for successfully estimating muscular effort with enough precision for
practical use for several limitations. One that we believe is the most limiting fac-
tor is the amount of training samples that, although considerably large, is still
insufficient when compared with the great variability among the human subjects,
resulting in an under represented underlying distribution. Another limitation is
the simplistic approach considered, specially the use, over the shelf, of general
purpose feature extraction algorithms that uses only color information to infer
the latent, more informative 3D contour information. The practicality of the ap-
proach is also limited for the cases that uses the normalization step, where the
prediction stage over unseen subjects requires labeled images for the case of zero
effort, as well as by the requirement of exposed skin images on the area to be
sensed. In conclusion, our approach shows an important and solid step toward
a practical application in the future, and through the limitations described, it
helps in highlighting the best possible future steps to follow.

7 Conclusions and future work

In this work we present the first steps towards estimation of muscular activity
from skin images using Computer Vision and Machine Learning. The proposed
approach consists in a framework that considers the capture of images of the
area of the muscle, the generation of a raw feature vector for the images using
image descriptors, the optional inclusion of anthropometric subject information
to the raw feature vector, an also optional step of normalization of the feature
vector, and finally the training of a model and estimating of level of new ex-
amples using supervised machine learning techniques. The first contribution of
this work is the experimentation of this framework over an image dataset of 100
subjects performing 5 and 3 different levels of effort in static posture of isomet-
ric contraction, being this the first steps in this line of research. In this work
we propose to use HS Color Histograms and Local Binary Patterns as image
descriptors. Regarding the machine learning techniques used in this work, they



are Support Vector Machines and Random Forests. Another contribution is the
proposal of feature vector normalization in relation to the feature vectors of min-
imum effort, in order to improve the estimation results helping the framework
to better generalize over previously unseen subjects.

As future work we plan to try other ways of improving the performance of
the approach. As the exploration of description techniques and parameters of the
machine learning algorithms has been very limited, we will extend the experi-
mentation to other image description techniques to build the feature vector, and
to other parameters for the machine learning algorithms. Another alternative is
to use deep learning, a technology that combines feature extraction and model
learning in one framework. As it is showed in this work, calibration is required
to get good results, so we will design and experiment other ways of calibration.
We also will extend the dataset with more subjects in order to find tendencies
of improvement of the results as the number of train subjects increases.
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