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Abstract— One of the main challenges in high-throughput plant 
data acquisition is the robust and automated analysis of the data. 
This includes a high-resolution 3D plant model reconstruction 
and an automated 3D segmentation. In this paper we present our 
top-down partitioning pipeline used to automatically segment 
high-resolution plant meshes. The proposed method produces a 
smart partition of the initial mesh that allows to identify the main 
stem, branches, and leaves of the plant. Extracted regions are 
then processed through the next stage of the automated analysis, 
which retrieves accurate plant information such as stem length, 
leaf width, length or area. Results involved applying our top-
down approach on a prototype population of 6 cotton-plant 
meshes studied at 3 or 4 time points. Using our partitioning 
pipeline, we obtained accurate meshes segmentations for 20 
plants out of the initial 22. Results validate the feasibility of an 
automated analysis of plant data. Future work will involve 
extending our approach to multiple plant varieties and using an 
atlas-based iterative feedback scheme to improve the 3D plant 
reconstruction. 

I. INTRODUCTION 
Plant phenomics research delves into deep plant 

phenotyping and reverse phenomics, fields of study focusing 
on the metabolism and physiological processes of plants, and 
analysing new plant’s traits to understand their mechanistic 
basis. The current aim of the plant phenomics research is to 
build realistic plant modelling systems. To this end, the “High-
Resolution Plant Phenomics Centre”, associated with “Neo 
Vista System Integrators” has built an advanced platform for 
high-throughput non-invasive plant phenomics data 
acquisition: PlantScan. This automated plant scanning platform 
captures high-resolution stereographic, multi-spectral and 
infrared images, and Light Detection and Ranging Sensors 
data. These data cubes are used to produce a full 3D surface 
mesh reconstruction of each plant with overlaid spectral 
information. As noted in a recent study [1], performing plant 
phenotyping requires high-throughput plant data acquisition of 
several thousands plants per day. PlantScan has been designed 
to acquire and analyse 3000 plants per day (≈ 2 Terabytes of 
data per day). Manual measurements for all the data is 
impractical, hence, the development of automated solutions is 
essential. This involves developing a fully automated software 
solution providing advanced features such as plant limbs 
recognition (stem, branches, leaves, etc.), accurate data 
extraction (stem size, leaf width, length, and area), longitudinal 
measurements and plant-part tracking over time. 

The pilot study developed in this paper involved processing 
prototype plant surface meshes previously reconstructed using 
the manually acquired images of 6 plants studied over 4 time-
points and using 3DSOM [9], a software for 3D scanning. We 
investigate the feasibility of developing an automatic and 
robust image and mesh based segmentation pipeline to process 
the large amount of data that will be acquired using the 
PlantScan. We particularly focus on the robust and accurate 
extraction of morphological features from the surface meshes.  

A recent survey on mesh segmentation techniques [2] 
classified the segmentation algorithms into 2 categories: part-
type and surface-type segmentation algorithms. For the 
semantic features extraction, we are interested in the part-type 
segmentation, which aims at extracting physical meaningful 
parts from the initial mesh. In the literature, numerous 3D-
model segmentation techniques are available [2,3]. This 
includes region-growing algorithms [2,11], convenient since 
the criteria used to constrain the growth of a region is flexible, 
primitives-fitting algorithms [4,12], applicable to plant 
segmentation considering that similar basic shapes are found 
on different parts of the plants (branches, leaves), and 
symmetry based segmentations [14], useful when the mesh to 
segment contains symmetries. In addition, top-down 
segmentation designs [18], that gradually and recursively 
partition a mesh into more precise regions, have proved to be 
robust to mesh deformations and noise, which is a non-
negligible advantage in the case of reconstructed plant meshes 
segmentation. Since cotton plants are variable in shapes, no 
algorithm, singly applied, is robust enough to provide an 
accurate segmentation in all cases. Unlike applied domains 
such as human body morphological segmentation [5] or 
medical imaging [15,16,17], that use advanced approaches for 
mesh segmentation, the applied domain of plant meshes 
partitioning lacks background material, the few existing papers 
describing semi-automatic [6] or 2D segmentation methods [7].  

Therefore, as an addition to the plant mesh segmentation 
domain, we propose a hybrid top-down approach that combines 
the different generic algorithms presented before in a step-wise 
automated segmentation pipeline that refines the segmentation 
at each completed step. Each stage of the pipeline aims at 
extracting a given limb from the plant mesh or at extracting a 
targeted sub-mesh that will be used as input at another step of 
the algorithm. Our design relies on the regularity of the cotton 
plant architecture that allows an iterative application of a given 
algorithm on similar parts of the plant. 
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The remainder of the paper is organized as follow. In 
section II, we give a full explanation of the pipeline we built to 
qualitatively and quantitatively study the plants. The 
performances of our design are described in section III, and 

finally, we sum-up this paper by sharing our conclusions on an 
automated analysis of the plant phenomics and introducing the 
future work planed in this field of research. 

 
Figure 1. Analysis pipeline. a, b, c, d are the main steps of the pipeline and 1, 2, 3 illustrations of the segmentation steps. 

II. METHODOLOGY 
The acquisition and processing pipeline is illustrated in 

Fig. 1 and consists of 4 main stages: a plant data acquisition, a 
multi-view 3D reconstruction, presented in sections II.B and 
II.C, an automated 3D segmentation of plant models, and an 
automated analysis of the segmented plant meshes, 
respectively presented in sections II.D and II.E. 

A. Prototype population 
Twenty-two plant meshes were used to evaluate our 

segmentation pipeline: 6 different plants studied at 4 time-
points, except for two plants that were studied only for 3 time-
points (due to data acquisition issues).  For each plant and 
each time-point, scientists from HRPPC performed manual 
measurements of plant data such as stem length, leaves width 
and length. The manual measurements were used as ground 
truth in order to validate the accuracy of the segmentation and 
data extraction.  

B. Plant data Acquisition 
Images were captured using a high-resolution Pentax K10 

camera with a sigma 20-40mm aspherical lens. Each cotton 
plant pot was placed at the centre of a rotating tray over a 
3DSOM calibration pattern (see section II.C). The camera was 
fixed on a tripod during all the acquisition process. The Lazy 
Susan was manually rotated and pictures were taken at each 
rotation angle. The acquisition process finished, 64 images 
were available (for each plant and at each time-point) for the 
multi-view 3D reconstruction (see section II.C). The image 
resolution was 3872x2592 (~10 million) pixels. An example 
of an acquired plant image is shown on Fig. 1. PlantScan will 
make this laborious acquisition process fully automatic. 

C. Multi-view based 3D reconstruction 
This stage involved reconstructing high-resolution meshes 

of plants using the previously acquired high-resolution images 
(see II.B). Scientists from HRPPC performed the 3D 
reconstruction. For this prototype population, they used 32 out 

of the 64 images, acquired per plant and date, as inputs to the 
reconstruction pipeline of 3DSOM [9], a 3D scanning system.  

The reconstruction pipeline of 3DSOM includes a pre-
processing step that extracts the object of interest from the 
input images and calibrates the camera using a known pattern 
present in the image. Then, a “direct-intersection shape from 
silhouette” approach extracts the visual hull (maximum 
volume containing the object) from the images. A wiring-up 
algorithm is used to build the final reconstructed mesh using 
the visual hull vertices [9]. The resolution of the reconstructed 
meshes fluctuates between 120000 and 270000 polygons. This 
step of the pipeline will be fully automated using a customized 
3D reconstruction algorithm such as the “Embedded Voxel 
Colouring” algorithm [10]. 

D. Plant meshes segmentation pipeline 
The 3D segmentation pipeline partitions the plant meshes 

into different meaningful parts: main stem, branches, and 
leaves. We segment a mesh by assigning a unique integer 
value (called label) to all the vertices of a same partition. The 
pipeline is subdivided into different steps, each consisting of a 
generic algorithm and acting at a different precision level. 

• The first pass, derived from [2,11], is based on a 
mesh-attributes constrained region-growing design. It 
takes as input the non-partitioned plant mesh and 
segments it into coarse regions: the stem and n regions 
for the pairs of branches and leaves (see II.D.1).  

• Inspired by [4,12,13], a second pass uses the regions 
obtained in the first pass as inputs for the next steps of 
the method, consisting of 2 “tubular-shape-fitting” 
based segmentations designed to partition the stem 
into relevant parts and detach the branches from the 
leaves (see section II.D.2 and II.D.3). 

• Isolated leaves are then processed by a symmetry-
based method [14] that finds the best cut-plane that 
splits a leaf into two parts. This is the deepest level of 
segmentation of our top-down approach (see II.D.4).  
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• Finally, a post-processing step including an adaptive 
region-growing [2,11] algorithm is used to sharpen the 
segmentation (see II.D.5). 

A detailed description of each stage is provided in the next 
paragraphs. For the rest of the paper, we consider that we are 
working in a direct, z-up, and Euclidean coordinates system, 
and that { }mppp ,...,, 21=ω  represents the set of vertices of the 
mesh to segment (m being the total number of vertices). We 
also denote d(p1, p2) and D(p1, p2) respectively the planar 
Euclidean distance  (on plane (x,y)) and the 3D Euclidean 
distance between p1 and p2. 

1) Step 1: Region-Growing based rough segmentation 
The aim of the first pass is to roughly segment the plant 

meshes. For a given plant holding n leaves, this involves 
segmenting the mesh into n+1 regions: 1 for the main stem, 
and n for the pairs of branches and leaves. 

Let c denote the plant centre; we retrieve c by finding the 
lowest vertex of the mesh, which represents the bottom of the 
main stem. Let r1 and r2 denote radii from c such that r1 is the 
inner radius within which a vertex pi is always part of the main 
stem region and r2 the outer radius after which a vertex is not 
part of the main stem region. The range of vertices belonging 
to [r1; r2] remains undetermined. To classify them, we retrieve 
the normal n

�
 for each vertex and compute the angle α 

between n and the z-axis. A vertex pi is considered part of the 
stem region if α belongs to a predefined range. 
Mathematically, having R1 and R2 sets of vertices verifying (1) 
and (2), the set of vertices “S” defining the stem is formulated 
by (3): 

 R1 = {pi ∈ω | d(pi,c) ≤ r1}  (1) 

 R2 = {pi ∈ω | r1 ≤ d(pi,c) ≤ r2,
Π
3
≤α ≤

2Π
3

⎛

⎝
⎜

⎞

⎠
⎟}  (2) 

 
21 RRS ∪=  (3) 

Once the stem partition is defined, we use a region-
growing algorithm to create the other regions. We start from a 
point that is not in the stem region, the seed, and grow a new 
label to all the eligible topological neighbours. A neighbour is 
eligible if it does not belong to any region yet. The algorithm 
terminates when there are no neighbours remaining i.e. all 
neighbours are already marked with a region label. We go 
through all the vertices of the plant and grow a new region 
each time we find a non-labelled vertex (not part of any region 
� a new seed). A typical result of this pass is presented on 
Fig. 1.1. 

2) Step 2: Shape fitting based stem segmentation 
Shape fitting segmentation algorithms consist of finding a 

given shape (known a priori) in a complex mesh and to 
consider that all the vertices within the matched shape belong 
to the same region. This part of the pipeline uses as input the 
previously extracted stem. Assessing that the cotton plant 
main stem follows a tubular shape, we build the closest 

matching tube around the stem so as to narrow the previous 
coarse segmentation.  

To create the tube shape, we create a curve that follows the 
stem and build the tube around it. Let’s define h as the highest 
point of the stem region. We start by creating a straight line, 
constituted of n regularly spaced points (l1, l2, …, ln) and going 
from c to h. We then go through the points of the line, l2, …, ln-

1, and interpolate their accurate position along the stem using 
the vertices pj belonging to their neighbourhood Vi defined by 
(4). The new coordinates of a given li are equal to the average 
coordinates of its neighbourhood’s vertices. 

 Vi (li ) = {pj ∈ S |Δz(pj, li ) ≤C1,d(pj, li ) ≤C2}  (4) 

with C1 et C2 defined constants, zΔ the absolute height 
difference and d the planar distance. 

The tube is then created around the curve using a 
parameterized radius R. From then, each vertex inside the tube 
is definitively considered as part of the main stem region. We 
create a new region U (Uncategorized) for the vertices that 
previously belonged to the coarse stem region and that are not 
in the tube. This region is made of vertices that should belong 
to branch regions. Fig. 2a/b illustrate the curve and tube fitting 
along the stem. 

Once we have a sharply defined stem, we can segment it 
into relevant parts. A stem part, defined by Parti, begins at a 
junction Ji between a branch Bi and the stem and goes up to 
the next junction Ji+1. We use the vertices from U to define the 
junctions. Mathematically, the set of vertices pk belonging to 
Parti is defined by (5). Fig. 2c shows the sharply segmented 
main stem obtained after this pass. 

 Parti (Ji, J(i+1) ) = pk ∈ S | Jiz ≤ pkz < J(i+1)z{ }  (5) 

 
Figure 2. Visualization of: a) the curve following the stem, b) the tube shape 
used to segment the stem and c) the segmented stem. 

3) Step3: Shape fitting based branch segmentation 
This step uses the previously segmented pairs of branches 

and leaves as inputs. In a process similar to the one leading to 
the creation of the tubular shape following the stem, we 
implemented a shape-fitting algorithm that, for a given pair 
branch/leaf, splits the pair into two different regions: a branch 
and a leaf. 

In this case, the curve starts from the point closest to main 
stem and goes to the tip of the leaf (maximum planar distance 
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from c, see Pmax on Fig. 3c). To interpolate the position of a 
given point li of the curve along the branch or the leaf, we first 
adjust its height to the interpolated height of the previous 
point, and then, find its neighbourhood Vi, defined by (6), 
using a standard 3D Euclidian distance D. Again, the position 
of li is the average of the positions of the vertices of the 
neighbourhood Vi. 

 }),(|{)( ClpDplV ijkjii ≤Γ∈=  (6) 

with Γk set of vertices belonging the pair k (branch k + leaf k) 
and C a predefined constant distance. 

We create the tube shape similarly as in section II.D.2 (see 
Fig. 3a), and use it to separate the branch from the leaf. Let Ik 
and Ok, denote respectively the set of vertices inside and 
outside the tube. Let’s then define pmin as the vertex from Ok 
which is the closest to c in terms of planar distance d (see Fig. 
3c) then, the sets of vertices defining the branch Bk and the leaf 
Lk are given by (7) and (8). Fig. 3b shows a result obtained on 
a pair branch/leaf. Fig 1.2 illustrates the mesh segmentation 
after this pass. 

 )},(),(|{ min cpdcpdpB jkjk ≤Γ∈=  (7) 

 }|{ kkjk BpjpL ∉Γ∈=  (8) 

4) Step 4: Symmetry based leaf segmentation 
The leaf segmentation algorithm has to be robust to the 

numerous natural leaf shape variations (folded leaves, leaf 
shape changing over time) and poor leaf reconstructions due to 
occlusions during the reconstruction process (leaf thickness, 
leaves stuck together). The more effective solutions are based 
on a property that is common to the majority of the leaves: the 
symmetry. We investigated multiple approaches such as 
symmetry plane parameters optimization [11], but the more 
satisfying leaf segmentations were obtained by a 2D 
symmetry. 

The same algorithm is applied to each separate leaf. Let 
pmax be the point that is the further from the plant centre c. And 
let p1 be a point of the leaf. If we consider the 2D vectors (on 
plane (x,y)) from c to pmax and from c to p1, the region in 
which p1 belongs to is given by the sign of the angle α 
between the two vectors (see Fig. 3c). Let S1k and S2k be the 
sets of vertices belonging to each side of the leaf k. We 
mathematically define S1k and S2k by (9).  

 }0|{1 ≤∈= αkjk LpS  and }0|{2 >∈= αkjk LpS  (9) 

A basic segmentation evaluation involves using the current 
regions of the leaf in order to compute the symmetry plane π 
of the leaf. Using vertices from S1k and S2k and the plane π, we 
retrieve the 2 maximum projection distances on each side of π 
(dS1k and dS2k) and consider the segmentation satisfactory if ρ 
verifies (10). If (10) is not verified, we repeat the 
segmentation process using the centre of the leaf cleaf instead 

of pmax. We then keep the solution that minimizes the absolute 
difference between dS1k and dS2k. 

 K≤ρ  with 
),min(
),max(

21

21

kk

kk

SS

SS

dd
dd

=ρ  and K a given distance  (10) 

 
Figure 3. a) The tube shape used to extract the branch, b) the separated 
branch and leaf, c) a schematic explanation of the leaf segmentation. 

5) Step 5: Post-processing step 
The post-processing step sharpens the segmentation and 

removes all the leaks that might have escaped the 
segmentation process. For instance, as a first pass, we assign 
to the proper regions the vertices belonging to U (see II.D.2 
and yellow region on Fig. 2c). The shared property of those 
vertices is that they belong to a branch; hence, they have to be 
added to the appropriate branch region. 

To perform this first pass, we use an adaptive region-
growing algorithm. The seeds for the region growing are the 
vertices from U that share an edge with a vertex from a branch 
region Bk (see II.D.3). Starting from the seeds, we recursively 
and gradually grow the considered branches labels to all the 
topological neighbours that belong to the region U. 

A second simple post-processing pass involves assigning 
isolated vertices to a region from their neighbourhood. A 
vertex is considered isolated when none of its topological 
neighbours belongs to the same region as the studied vertex.  

E. Computation of plant information 
In this section, we detail how, using the segmented 

meshes, we computed plant information such as stem length, 
leaf width and leaf length. We also explain how we managed 
to quantify the error on the measurements by comparing them 
with the ground truth. 

For the next paragraphs, Ω stands for the number of plants 
(here 6), Φ stands for the number of time-points (3 or 4), and 
aij and mij respectively denote the automated and manual 
measurements of the stem length for the plant i at time-point 
Tj, with 1 ≤ i ≤ Ω and 0 ≤ j < Φ-1. 

1) Main stem length 
To compute the main stem length, we locate the highest and 

lowest vertices in the stem regions and compute their absolute 
height difference. Since initial study cases haven’t been 
subject to a precise camera calibration, to be able to compare 
the automated measurements with ground truth, we first need 
to define a conversion ratio from the mesh unit to the manual-
measurement unit (mm). We compute this scaling ratio λ by 
applying (11). 
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Using λ, we scale the automatically retrieved data such 
that

ijij ag ×= λ , with gij scaled value of aij. With comparable 
data, we can compute an average error E between ground truth 
and experimental measurements using (12). 
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2) Leaves width and length 
To compute a leaf width, we first locate the leaf, and, 

using the previously computed symmetry plane, we retrieve 
one point on each side of the leaf such that they maximize the 
sum of the projection distances to the cut plane. The 
maximized sum is the leaf width. For the leaf length, we only 
consider the vertices that belong, or are close enough to the 
cut plane and keep the two that are the further apart. The 
Euclidean distance between these two points is the leaf length. 

Error measurements were also performed for the leaves 
width and length. The difference with the formulas used for 
the main stem is that we loop over the plants leaves. Let Ψij 
denote the number of leaves of the plant i at time-point Tj (Ψ 
being the total number of leaves) and aijk(resp. mijk) denote the 
automated (resp. manual) measurements (width or length) of 
the leaf k for the plant i at time Tj. Adapted formulas are given 
in (13) (14). 
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III. EXPERIMENTAL RESULTS 
In this section, we present the results we obtained by 

applying our segmentation method on the prototype dataset of 
meshes (see II.A). As explained before, we used the manual 
measurements performed on each plant as ground truth. 

As illustrated by the typical results of Fig. 5, our algorithm 
performed well, i.e. stem, branches and leaves are sharply 
identifiable, and is robust to the major reconstruction issues 
(see Fig. 4a/b). Moreover, the longitudinal analysis presented 
on Fig. 6 shows that, using our automated analysis we 
obtained quantitative results similar to ground truth in most 
cases for the stem length and leaves width. By applying 
(12)(14), we obtained the negligible average errors Es ≈ 4.0% 
(≈ 6.4 mm on an average stem size of 161mm) and Ew ≈ 3.8% 
(≈ 3.1 mm on an average leaf width of 84.2mm) on the main 
stem size and leaves width measurements, and the non-
negligible average error El ≈ 9.7% (≈ 6.58 mm on an average 
leaf length of 67.3mm) on the leaves length measurements. 

The main weakness of our algorithm is illustrated on Fig 
4c. Occlusions during the 3D reconstruction sometimes cause 
the apparition of a bundle at the top of the stem that can’t be 
segmented using standard segmentation algorithms. The use of 
PlantScan images and a custom reconstruction algorithm 
constrained by light detection and ranging sensors data will 
solve the major reconstruction problems illustrated on Fig. 
4a/b/c, and since our results, qualitative as well as 
quantitative, mainly depend on the quality of the 
reconstruction, it will also lead to better plant meshes 
segmentations and a more accurate data extractions. 

 
Figure 4. Robustness to a) leaves stuck together, b) holes in the mesh. The 
current main issue: c) top-bundle at the top of the main stem. 

 
Figure 5. Qualitative segmentation results for 2 plants a and b over 4 time-points. 
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Figure 6. Longitudinal comparison of the automated measurements with ground truth. The graphs represent the stem size and average leaves width in millimetres 
over the 3 or 4 time-points. Red and blue � manual and automated stem length. Green and brown � manual and automated average leaves width. 

CONCLUSION 
In this paper, we presented a top-down 3D segmentation 

pipeline used to automatically partition an initial set of 22 
cotton-plant meshes. Plant shape variations and reconstruction 
issues (leaves occlusions) make of the development of a robust 
segmentation algorithm a challenging task. 

From the qualitative results presented in section III, we can 
conclude that our top-down approach is valid in the perspective 
of a morphological segmentation. Our pipeline allows the 
extraction of the meaningful limbs of the plant, which 
demonstrates certain robustness to the main shape variations 
and reconstruction issues. From a quantitative point of view, 
the tiny error percentages on the stem length and leaves width 
measurements validate the plausibility of an accurate 
automated analysis. However, the non-negligible error on the 
leaves length measurements, 9.7%, demonstrates that work has 
still to be done in order to obtain a complete and precise 
analysis.  

Further work will involve using information from the 
segmented meshes and light detection and ranging sensors data 
in an iterative feedback scheme aiming at improving the 3D 
reconstructions of the plants. The improved 3D models will 
again be processed through the segmentation pipeline and more 
accurate data will be extracted. The process will be repeated 
until the extracted data are considered optimal. 
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