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This supplement contains several important details that we cannot place in
the paper due to space restrictions. These details are three-fold. First, we present
an example that may help to understand the steps performed by CSGS algorithm
for learning a canonical graph. This example illustrates how spurious edges are
added in the grow phase and removed in the shrink phase. Second, we describe
the configuration setting used for performing density estimation algorithms in
order to guarantee reproducible results in our experiments. Third, we present ad-
ditional empirical results that show qualitative aspects of the structures learned
by the different structure learning algorithms.

1 An example of how CSGS constructs a canonical graph

This section describes how a canonical graph is constructed by CSGS. Basically,
the construction consists in adding edges to an initial empty canonical graph.
Proposition 1 is used as a criterion for determining the presence of any edge. As
we will see below, depending on the order in which edges are added, some edges
can be spurious. Therefore, a canonical graph is constructed in two phases in
order to remove possible spurious edges. First, CSGS adds edges, adding nodes
to blankets using Proposition 1.2; this is called the grow phase. Second, CSGS
removes spurious edges, removing nodes from blankets using Proposition 1.1; this
is called the shrink phase. For determining the truth value of any independence
relation in Proposition 1, we use an oracle that is capable of deciding whether
a(n) (in)dependence holds in the underlying structure.

Let V be {a, b, c} with a lexicographical order. Suppose we have the underlying
structure shown in Figure 1 that can be represented by using two instantiated
graphs: G(x0) and G(x1) shown in Figures 1a and 1b, respectively. The former
graph encodes no independences. In contrast, in the latter, there is no edge
between the nodes a and b when c is removed, then it encodes the context-
specific independence I(Xa, Xb | x1c). As discussed in Section 2.1, I(Xa, Xb | x1c)
implies any independence of the form I(xa, xb | x1c), where xa and xb can be
any value of Xa and Xb, respectively. This underlying structure can also be
represented by using canonical graphs of a canonical model G. These graphs are
similar to those shown in Figure 1, except that all nodes of a canonical graph are
assigned. As an illustrative example, we only focus on constructing the canonical
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graph G′(x) = (V,E, x) ∈ G where x = {x0a, x0b , x1c}. G′(x) can only encode the
context-specific independence I(x0a, x

0
b | x1c) which is implicitly encoded in the

instantiated graph G(x1c).
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Fig. 1: An underlying structure represented as two instantiated graphs: G(x0c)
and G(x1c). Gray nodes indicate assigned variables.

As is shown Figure 2a, the initial canonical graph G′(x) is empty, thus
MB(a) = {} for all a ∈ V . Following the ordering, we start adding nodes to
the blanket MB(a) by using Proposition 1.2. We can add edges between a and
any node in V \MB(a) \ {a} = {b, c}. Thus, for determining the presence of the
edge (a, b), we query the oracle about the assertion I(Xa, Xb | xMB(a)), where
b /∈ MB(a). The oracle answers false, thus we add the edge (a, b) to E which
results in a “growth” in MB(a) = {b}. The new canonical graph is shown in Fig-
ure 2b. Next, for determining the presence of the edge (a, c), we query the oracle
about the assertion I(Xa, Xc | xMB(a)) where c /∈ MB(a). The oracle answers
false, thus we add the edge (a, c) to E such as shown in Figure 2c, resulting in
MB(a) = {b, c}.
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(a) Initial canonical
graph G′(x).
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Fig. 2: Steps performed by grow phase to add nodes to the Markov blanket
MB(a) in the canonical graph G′({x0a, x0b , x1c}). Orange and blue nodes indicate
nodes involved in Proposition 1.
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At the end of the grow phase, we have the canonical graph G′(x) shown in
Figure 3a. Comparing G′(x) with G(x1c), the edge (a, b) in G′(x) is spurious
because it is not in G(x1c). Since MB(a) = {b, c}, we can use Proposition 1.1 for
removing the edges (a, b) and (a, c). In the first case, we query the oracle about
the assertion I(Xa, Xb | xMB(a)\{b}) where b ∈ MB(a). The answer is true,
then we remove (a, b) from E as is shown in Figure 3b, resulting in a “shrink”
in MB(a) = {c}. In the second case, we query the oracle about the assertion
I(Xa, Xc | xMB(a)\{c}) where c ∈ MB(a). In contrast, the answer is false, then
the canonical graph G′(x) remains unchanged as shown in Figure 3c.
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Fig. 3: Steps performed by shrink phase to remove nodes from the Markov blan-
ket MB(a) in the canonical graph G′({x0a, x0b , x1c}).

Finally, repeating the previous steps by using the nodes b and c in turn, we
obtain the canonical graph shown in Figure 4. This graph encodes the context-
specific independence I(x0a, x

0
b | x1c).
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Fig. 4: Resulting canonical graph obtained after performing grow and shrink
phases.
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2 Configuration setting for density estimation algorithms

We replicate the recommended tuning parameters for GSSL and DTSL algo-
rithms detailed in [1], and [2], respectively. More precisely, for GSSL, we gen-
erated 0.5, 1, 2, and 5 million positive features1; with pruning thresholds of
1, 5, and 10; Gaussian standard deviations of 0.1, 0.5, and 1, combined with
L1 priors of 1, 5, and 10; giving a total of 108 configurations. On the other
hand, for DTSL, we used the κ values of 1.0, 0.1, 0.01, 0.001, 0.0001 to ob-
tain an initial model, and then 4 feature generation methods for positive fea-
tures (nonzero, prune-nonzero, prune-5-nonzero, prune-10-nonzero);
and Gaussian standard deviations combined to L1 priors similar to GSSL; giv-
ing a total of 50 configurations.

3 Additional empirical results

The average feature length is a useful statistic over the learned structures,
which summarizes important information by determining qualitative key as-
pects present in the underlying structure. Therefore, these statistics allow us
to evaluate if the learned structures have correctly encoded the context-specific
independences present in the underlying structure. In contrast to standard met-
rics, such as Hamming distance and F-measure, the average feature length can
be computed over complex representations of structures (such as sets of fea-
tures). Thus, each learned structure is represented as a set of features F , and
then we compute the average feature length for two important subsets of their
features: the features F ′ = {f iD ∈ F : xiw = x0w} that satisfy the context x0w,
and the features F ′′ = {f iD ∈ F : xiw = x1w} that satisfy the context x1w, where
F ′∩F ′′ = ∅. According to the underlying structure, these two averages are differ-
ent because the context-specific independences are only present on the context
x1w. Ideally, the average feature lengths of F ′ should be equal to n, and the
average of F ′′ should be equal to 2. In this manner, using both averages from
the learned structures, we can determine which structure is more accurate, that
is, that structure whose averages are closer to the averages obtained from the
underlying structure.

Figure 5 shows the average feature lengths for all the structure learning
algorithms. This figure only shows the two average feature lengths for CSGS and
CSPC because, for the remaining algorithms, it is not possible to report both
averages. On the one hand, for knowledge discovery algorithms, the features
generated from the learned graphs result in feature lengths that are the same
for both contexts. On the other hand, for density estimations algorithms, the
learned features are positive, resulting in a unique feature length for F ′′. As a
result, in qualitative terms, the structures learned by knowledge discovery and
density estimation algorithms cannot capture the context-specific independences.
In contrast, CSGS and CSPC obtain different average feature lengths for each

1 A feature is positive if its conjunction of values does not have false values; formally,
a feature f i

D is positive if xi
a 6= 0 for all a ∈ D.
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Fig. 5: Average lengths for two subsets of the features learned by the learning
algorithms: the features F ′, which satisfy the context x0w; and the features F ′′,
which satisfy the context x1w. Only the features learned by CSGS and CSPC can
satisfy both contexts. For knowledge discovery algorithms, the average feature
lengths for F ′ and F ′′ are the same. For density estimation algorithms, only
the average feature length for F ′′ can be computed. Every cell represents the
average over ten datasets with a fixed size.

context. As shown in Figure 5, the averages for CSGS and CSPC follow the
expected trend, that is, the average feature lengths of F ′ are greater than 2, and
the averages of F ′′ are close to 2. For the most reliable situations, namely n = 6
for |D| ≥ 10k, CSGS and CSPC obtain very accurate averages. Additionally,
the average feature lengths obtained by CSGS are relatively similar to those
obtained by CSPC, showing that both algorithms learn similar structures.
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Another interesting trend shown in Figure 5 is in the average feature lengths
obtained by knowledge discovery algorithms. Given that the underlying structure
encodes no conditional independences, knowledge discovery algorithms do not
learn any independence, obtaining fully connected graphs. This fact is mirrored
in their average feature lengths, which tend to be close to n.
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Fig. 6: Average number of features obtained by each learning algorithm. Every
cell represents the average over ten datasets with a fixed size.

Finally, Figure 6 shows the number of features obtained by each learning al-
gorithm. These results highlight the limitation of knowledge discovery algorithms
in learning context-specific independences. Knowledge discovery algorithms only
tend to learn fully connected structures, that is, a graph that encodes no inde-
pendences. This fact can be analyzed by using Figures 5 and 6. For instance,
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in the case of GSMN for n = 6 and |D| ≥ 5k, the learned structure is fully
connected; hence, feature lengths are equal to 6, such as shown in Figure 5, and
numbers of features are 26 = 64, such as shown in Figure 6.
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