Biblio

Export 24 results:
Autor Título Tipo [ Año(Asc)]
Filters: Autor is Bromberg, Facundo  [Clear All Filters]
2014
Schlüter F, Bromberg F.  2014.  El enfoque IBMAP para aprendizaje de estructuras de redes de Markov. Tesis doctoral en Facultad de Ciencias Exactas - Universidad Nacional del Centro de la Provincia de Buenos Aires. Director: Facundo Bromberg. . Doctorado en Ciencias de la Computación (PhD in Computer Science):138.
Abraham L, Bromberg F, Forradellas R.  2014.  Estimación de carga muscular mediante imágenes. Argentinean Symposium of Artificial Intelligence (ASAI) - Jornadas Argentinas de Informática. :91--98.
Edera A, Strappa Y, Bromberg F.  2014.  The Grow-Shrink strategy for learning Markov network structures constrained by context-specific independences. 14th edition of the Ibero-American Conference on Artificial Intelligence.
Schlüter F, Bromberg F, Edera A.  2014.  The IBMAP approach for Markov network structure learning. Annals of Mathematics and Artificial Intelligence. 72(3):197--223.
Edera A, Schlüter F, Bromberg F.  2014.  Learning Markov networks networks with context-specific independences.. International Journal on Artificial Intelligence Tools. 23(06)
2011
Edera A, Bromberg F.  2011.  Aprendizaje de independencias específicas del contexto en Markov random fields. XVII Congreso Argentino de Ciencias de la Computación.
2010
Schlüter F, Bromberg F, Pérez DS.  2010.  Speeding up the execution of a large number of statistical tests of independence. Proceedings of ASAI 2010, Argentinean Symposioum of Artificial Intelligence.
2007
Bromberg F, Margaritis D.  2007.  Efficient and Robust Independence-Based Markov Network Structure Discovery.. 20th International Joint Conference of Artificial Inteliigence (IJCAI). :2431-2436.
Bromberg F, Margaritis D.  2007.  Markov networks structure discovery using independence tests. Computer Science. Doctor of Philosophy:182.
2006
Bromberg F, Margaritis D, Honavar V.  2006.  Efficient Markov network structure discovery using independence tests. Proceedings of the SIAM Conference in Data Mining. :141--152.